Colorlight

Calibration Pro

User Manual V7.4

Contents

Chapter1 Calibration System	1
1.1 Operating Environment	1
1.1.1 System Requirement	1
1.1.2 Capture Device	1
1.1.3 Auxiliary Devices	4
1.2 Install and Uninstall	4
1.2.1 Install Calibration Pro	4
1.2.2 Uninstall Calibration Pro	8
Chapter2 Quick Start	10
2.1 Before Calibration	10
2.1.1 Complete System for Calibration	10
2.1.2 Parameter Configuration	10
2.2 Start Screen	
2.2.1 New Project	11
2.2.2 Language and Help	11
2.2.3 Open Project	12
2.2.4 Status Bar	12
Chapter3 Calibration with Industrial Camera	13
3.1 CCM6000 Assembly	13
3.1.1 Tripod Setup	13
3.1.2 Mount Tripod Head	13
3.1.3 Mount Camera	14
3.2 Full-Screen Calibration	14
3.2.1 New Full-Screen Calibration	14
3.2.2 Project Settings	27

5.2.5	Camera Adjustment	48
3.2.4	Effect Debugging	52
3.2.5	Image Capture	53
3.2.6	Generate Coefs	60
3.2.7	Effect Evaluation	71
3.3 Cab	inet Calibration	73
3.3.1	New Cabinet Project	73
3.3.2	Project Settings	80
3.3.3	Camera Adjustment	91
3.3.4	Effect Debugging	93
3.3.5	Image Capture	93
	Calibration Log	
3.3.7	Coefs Assembly	110
Chapter4(Calibration with Canon Camera	113
-	Calibration with Canon Camera	
4.1 Can		113
4.1 Can 4.1.1	on Camera Assembly	113
4.1 Can 4.1.1 4.1.2	on Camera Assembly	113 113 113
4.1 Can 4.1.1 4.1.2 4.1.3	on Camera Assembly Tripod Setup Mount Tripod Head	113 113 113
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens	113 113 113 114
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens Mount Camera	113 113 113 114 115
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full 4.2.1	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens Mount Camera -Screen Calibration	113 113 113 114 115
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full 4.2.1 4.2.2	Tripod Setup Mount Tripod Head Attach Lens Mount Camera Screen Calibration New Full-Screen Calibration	113 113 113 114 115 127
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full 4.2.1 4.2.2 4.2.3	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens Mount Camera -Screen Calibration New Full-Screen Calibration Project Settings	113113113114115127141
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full 4.2.1 4.2.2 4.2.3 4.2.4	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens Mount Camera -Screen Calibration New Full-Screen Calibration Project Settings Camera Adjustment	113 113 113 114 115 127 141
4.1 Can 4.1.1 4.1.2 4.1.3 4.1.4 4.2 Full 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	on Camera Assembly Tripod Setup Mount Tripod Head Attach Lens Mount Camera -Screen Calibration New Full-Screen Calibration Project Settings Camera Adjustment Image Capture	113113113114115127141144

4.3.1 New Cabinet Project	150
4.3.2 Project Settings	155
4.3.3 Camera Adjustment	159
4.3.4 Image Capture	159
4.3.5 Calibration Log	171
4.3.6 Coefs Assembly	172
Chapter5 Menu	
5.1 Default Settings	175
5.2 Hardware Device	177
5.3 Image Viewing	179
5.4 Tools	181
5.4.1 CoefRotateTools	181
5.4.2 CrossTools	
5.4.3 Gamma Test	
5.4.4 Adjust Coefs	185
5.4.5 Calibration coefs mapping	186
5.4.6 Thermometer	187
5.4.7 Fuse Seam Coef	187
5.4.8 Flash Cal Tool	188
Chapter6 FAOs	189

Chapter1 Calibration System

Calibration Pro is a professional software developed by Colorlight for LED display calibration. It integrates advanced algorithms such as AI intelligence and machine vision, enabling LED display calibration with high accuracy and high efficiency.

1.1 Operating Environment

1.1.1 System Requirement

Operating system	Windows10 or later (64-bit or above)
RAM	16G or more (64G RAM is recommended for calibration
	with CCM6000 camera. RAM smaller than 64G will
	affect the calibration efficiency.)
Camananiaatian	With multi-media port (e.g.: HDMI), USB port (3.0 or
Communication	higher), and Gigabit network port.
	Either with a graphics card that supports full-screen
Display	pixel-to-pixel display, or with a sender that supports
	controlling LED display via USB.

1.1.2 Capture Device

1.1.2.1 Industrial Camera

Camera: CCM6000

Fig.1-1 Camera body of CCM6000

Lens: Milvus 1.4/50 (Standard); Or, Milvus 2/35 or Milvus 2/100 (Optional)

Fig.1-2 Milvus 2/35

Fig.1-3 Milvus 1.4/50

Fig.1-4 Milvus 2/100

• Tripod head: Manfrotto 405 geared tripod head (Standard)

Fig.1-5 Manfrotto 405 geared tripod head

Tripod: Manfrotto MT190GOC4TB tripod (Standard)

Fig.1-6 Manfrotto MT190GOC4TB tripod

• Cable: Special power adapter and USB 3.0 cable (Standard)

Fig.1-7 Power adapter and USB 3.0 cable

1.1.2.2 Canon Camera

Camera: Support for Canon70D, 80D, 90D, 7D, and 7D Mark. Canon 90D is recommended.

Fig.1-8 Canon camera

• Lens: Canon EF 70-300mm f/4-5.6L IS USM is recommended.

Fig.1-9 Canon EF 70-300mm f/4-5.6L IS USM

• Tripod head: Manfrotto-410 tripod head is recommended.

Fig.1-10 Tripod head

Tripod: MT190GOC4TB -190GO tripod is recommended.

Fig.1-11 Tripod

Power adapter:

Fig.1-12 Power adapter

• Cable: Subject to the model of Canon camera.

1.1.3 Auxiliary Devices

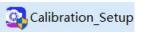
1.1.3.1 Color Meter

The software supports Konica Minolta CS-2000, CS-3000, and CS-410; Photo Research PR-655; and Jingce Electronic EYE2-400.

1.1.3.2 Thermometer

The software supports FST600 (0–100°C), which can be used together with a camera.

1.1.3.3 Barcode Scanner


The software supports ZEBRA DS2208.

1.2 Install and Uninstall

1.2.1 Install Calibration Pro

Download the latest version of Calibration Pro installer from Colorlight's

official website first. Then, double-click the installer start the installation.

1) Select the default software language.

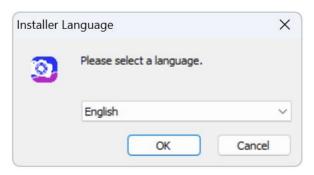


Fig.1-13 Select the default language

2) Select an installation method at the first page of the setup wizard.

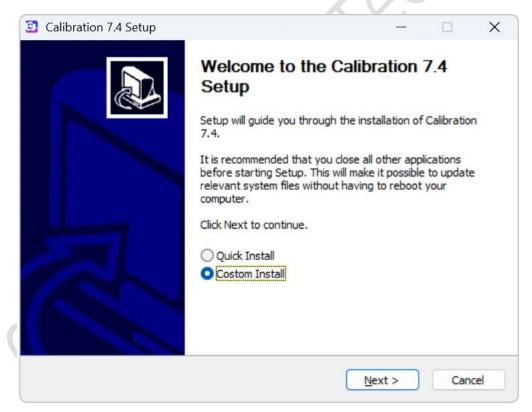


Fig.1-14 Calibration Pro setup wizard

- Quick Install: Select Quick Install and then click Next to start auto installation.
- ◆ Custom Install: Select Custom Install and then click Next to continue.

Select a path for the installation and then click Next.

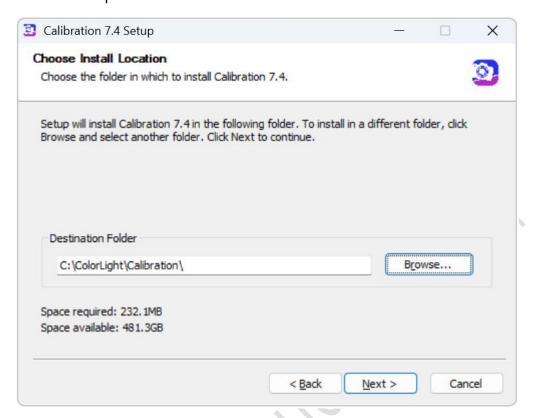


Fig.1-15 Select Installation path

■ Select the components you want for *Calibration Pro*, and then click **Install** (in order to ensure the full functioning of *Calibration Pro*, please select all components for the first-time installation or version update).

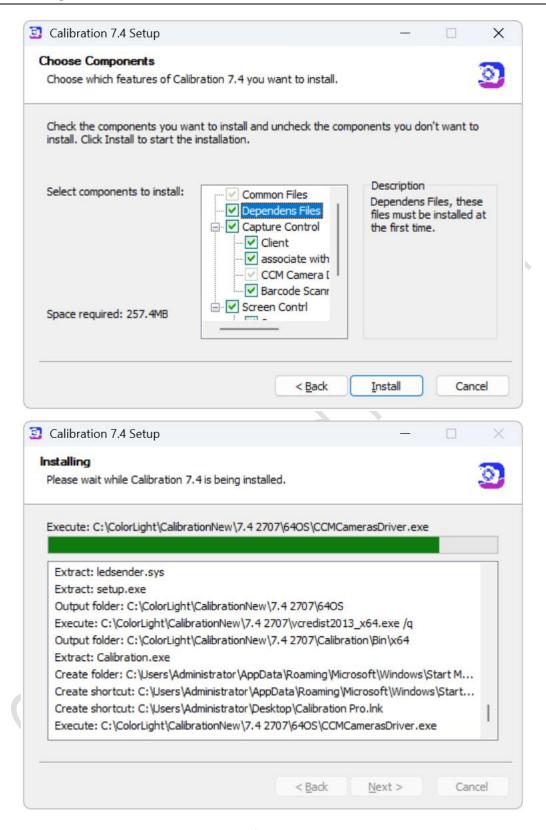


Fig.1-16 Select components

Click Finish to exit the setup wizard. Calibration Pro is now ready for use.

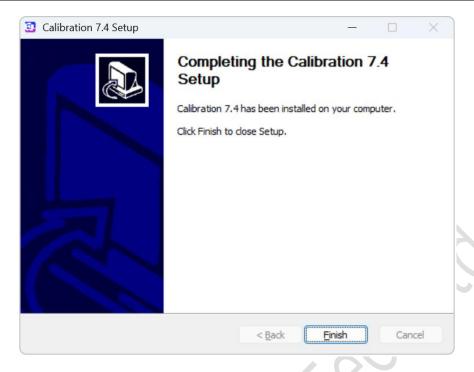


Fig.1-17 Installation complete

Once you have finished the installation, the icon of *Calibration Pro* will automatically appear on the PC desktop. You can double-click the icon to launch the software.

1.2.2 Uninstall Calibration Pro

Taking the Windows 10 operating system as an example, if you want to uninstall *Calibration Pro*, you can navigate to **Start** > **Calibration**, and then right-click on any icon under the **Calibration** folder to bring up a context menu. Next, select **Uninstall** to access the uninstallation guide.

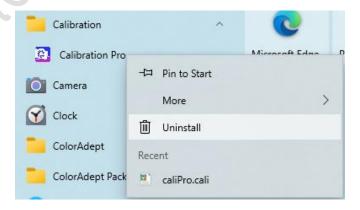


Fig.1-18 Uninstall Calibration Pro

When reinstalling the software, the previously installed version will be uninstalled.

Fig.1-19 Uninstall the previous version

Chapter2 Quick Start

2.1 Before Calibration

2.1.1 Complete System for Calibration

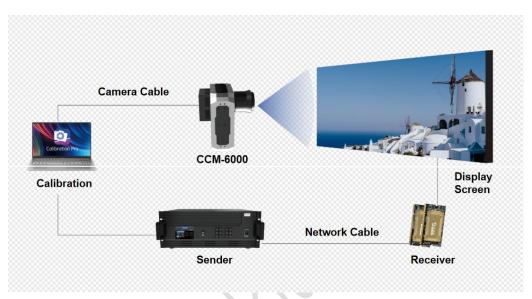


Fig.2-1 The complete system for calibration

- Install Calibration Pro on your PC.
- Connect your PC to the sender using a control cable (USB debugging cable or network cable).
- Connect your PC to the camera using the camera cable.

2.1.2 Parameter Configuration

Configure the screen parameters (receiver parameter and topology) properly using the software *LEDVISION*. During parameters configuration, disable calibration and other adjustment functions to ensure the original display effect of the screen. Once you have finished the configuration, send and save the parameters to the receiver. Next, exit *LEDVISION* and other LED display control software.

2.2 Start Screen

The start screen of *Calibration Pro* is as shown in Figure 2-2.

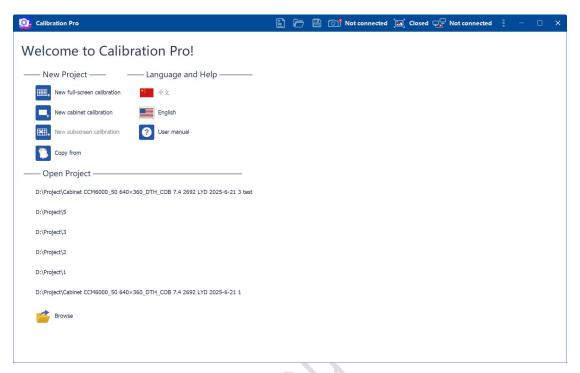


Fig.2-2 Calibration Prostart screen

2.2.1 New Project

- New full-screen calibration: Click this icon to start creating a new full-screen calibration project.
- New cabinet calibration: Click this icon to start creating a new single-cabinet calibration project.
- **Copy from:** Click this icon to apply project setup wizards of a saved project for calibrating multiple screens with the same specification.

2.2.2 Language and Help

- 中文: Click this icon to set Chinese as the software language.
- **English**: Click this icon to set English as the software language.
- ? User manual: Click this icon to access the Calibration Pro User

Manual.

2.2.3 Open Project

You can find your recent projects below **Open Project** and click on any one of the projects to access its editing interface.

Browse: Click this icon to select a calibration project from a desired folder.

2.2.4 Status Bar

The status bar is located at the top right of the main interface, allowing users to obtain information about the current status through icons and text prompts.

Fig.2-3 Status bar

- New: Click the icon 🗈 to access the calibration project setup wizard.
- Open: Click the icon to select a saved project file.
- Save: Click the icon 🖹 to save the current project parameters.
- Connect: Click the icon to connect to the camera. The icon will appear as once the camera has been connected.
- Start EVF: Click the icon ito enable EVF. The icon will appear as once the EVF has worked successfully, and you can view the image captured in the monitoring area in real time.
- **Display control connection:** Click the icon to access the interface for connecting the control PC. The icon will appear as once the control PC has been connected.

Chapter3 Calibration with Industrial Camera

3.1 CCM6000 Assembly

3.1.1 Tripod Setup

Unfold the tripod and adjust its height, making it face the screen center, or at a height close to the user's eye level.

Fig.3-1 Unfold the tripod

3.1.2 Mount Tripod Head

Align the screw hole at the bottom of the tripod head with the mounting screw of the tripod, and then screw the tripod head clockwise.

Fig.3-2 Mount the tripod head

3.1.3 Mount Camera

1) To unlock the tripod head, hold the latch and flip the quick-release lever to the left.

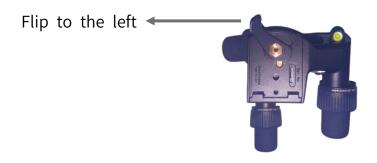


Fig.3-3 Mount tripod head

- 2) Adjust the lens direction to make it align with that of the tripod head.
- 3) Mount the camera onto the plate of the tripod, and the lever will be automatically released to fix the camera.

Fig. 3-4 Mount the camera

3.2 Full-Screen Calibration

3.2.1 New Full-Screen Calibration

Step 1: Full-screen project wizard-1

In the start screen, click **New full-screen calibration** to access the **Full-screen project wizard-1**. See Figure 3-5.

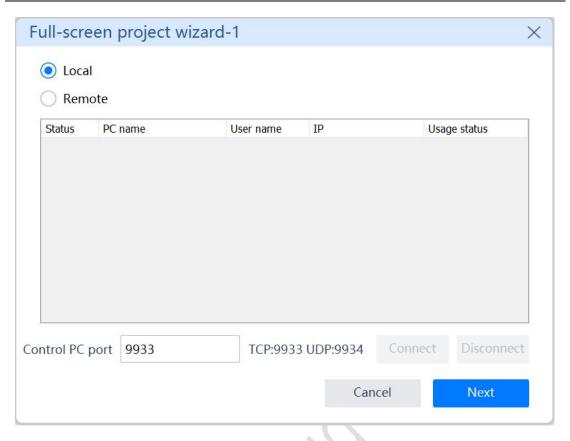


Fig.3-5 Select Local

- 1) For calibration with a single control PC, select **Local** to connect to the control PC.
- 2) For calibration with 2 PCs, select **Remote** and then select a PC from the sheet below as the control PC (available PCs in the currently used LAN will automatically be shown in the sheet). Once you have selected the target PC, click **Connect**.

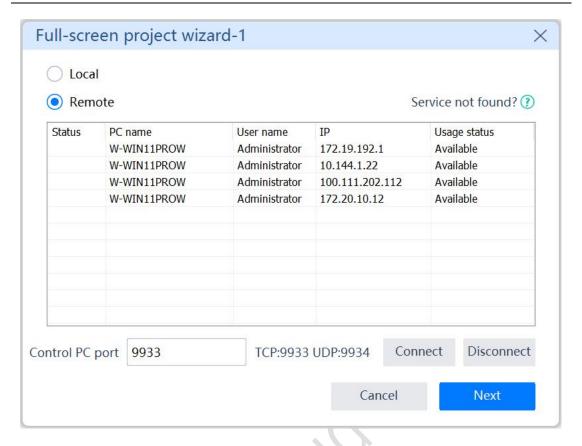


Fig.3-6 Select Remote

Notes:

- 1 It is recommended that you select **Remote** when the sender is placed far from the LED screen, and the control PC cannot physically connect to the sender via a cable.
- ② For calibration with 2 PCs, the PCs should share the same LAN (connected via WIFI or network cable), and the firewalls of them should be turned off. The 2 PCs should install *Calibration Pro* of the same version.
- ③ The PC for display capture will automatically launch *CaliPro Server* and should be connected to the control PC.
- The Control PC port is 9933 by default. If the default port has been occupied by other devices, you will need to set a port number for both the control PC and the PC for display capture. To modify the port number, right-click the software interface or minimize the interface in the control PC, and then access the network setup window to enter a new port number. See Figure 3-7.

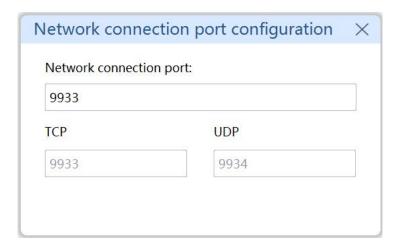


Fig.3-7 Network connection port configuration

⑤ If the ports match and the control PC can ping the PC for display capture, but the target device is not detected, click the ③ icon and manually enter the IP address. See Figure 3-8.

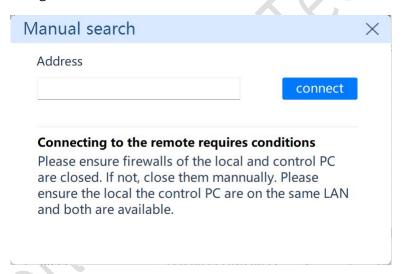


Fig.3-8 Manual search

After the control PC finished network connection, click **Next** to bring up the **Full-screen project wizard-2**.

Step 2: Full-screen project wizard-2

In the **Full-screen project wizard-2**, you will be able to view information about the amount of the connected sender and receiver, their model, and their program version. See Figure 3-9.

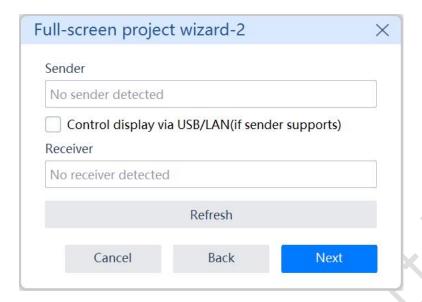


Fig.3-9 Full-screen project wizard-2

- If the sender supports display control via USB or LAN, you can select the Control LED display via USB or LAN (if sender supports) checkbox. This will allows for pixel-to-pixel calibration image display without video signal.
- If the sender does not support USB control, you can perform calibration using video signal. Note that you should perform calibration with an extended screen in this case (see Project settings-Canvas settings in the following descriptions for reference).
- If the sender supports controlling screen group, you will be able to select the desired group for control in this window.

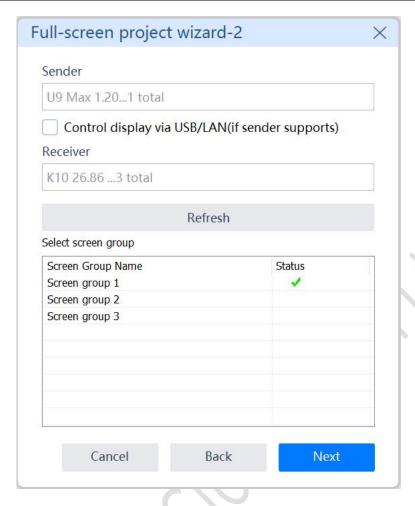


Fig.3-10 Full-screen project wizard-2: screen group

Then, you can click **Next** to move on to the **Full-screen project wizard-3**.

Step 3: Full-screen project wizard-3

You can finish camera settings in this step. See Figure 3-11.

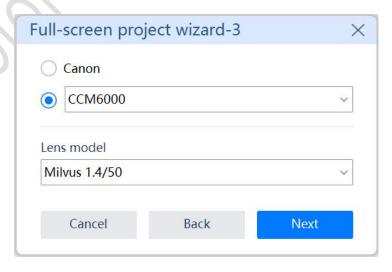


Fig.3-11 Full-screen project wizard-3

- If your PC has not connected to the camera, you should finish settings in this step according to the camera you use. Supported camera models include: CCM1600, CCM2600, CCM6000, and CCM900C.
- If your PC has connected to the camera, the camera model will be automatically selected.
- If you use the industrial camera, you will need to select the lens model. The supported lens include: Milvus1.4/50, Milvus2/35, Milvus2/100, Canon 35, and Canon 70-300.

Once you have finished the camera settings, you can click **Next** to bring up the **Full-screen project wizard-4**.

Step 4: Full-screen project wizard-4

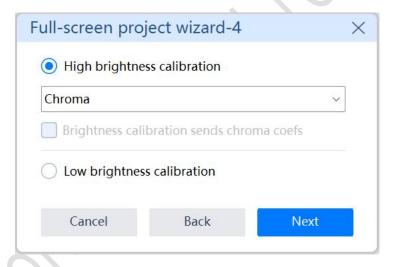


Fig.3-12 Full-screen project wizard-4

You can select the calibration mode in this step. See Figure 3-12. You should first select **High brightness calibration** or **Low brightness calibration** as needed. For high brightness calibration, you can select among **Brightness**, **Chroma**, and **Seam correction (only)**. **High-precision capture** and **Quick capture** are supported in **Low brightness calibration** mode.

Brightness: To calibrate screen for brightness uniformity, enable
 Brightness calibration sends chroma coefs. Then chroma coefficients
 will be sent and chroma can be adjusted.

- Chroma: Supports calibrating screen for brightness and color uniformity.
- Seam correction (only): Supports calibrating the bright and dark lines that appears on the screen after the assembling.

After the selection, you can click **Next** to move on to the **Full-screen project** wizard-5.

Step 5: Full-screen project wizard-5

You can finish setting modules, cabinets, and the screen in this step.

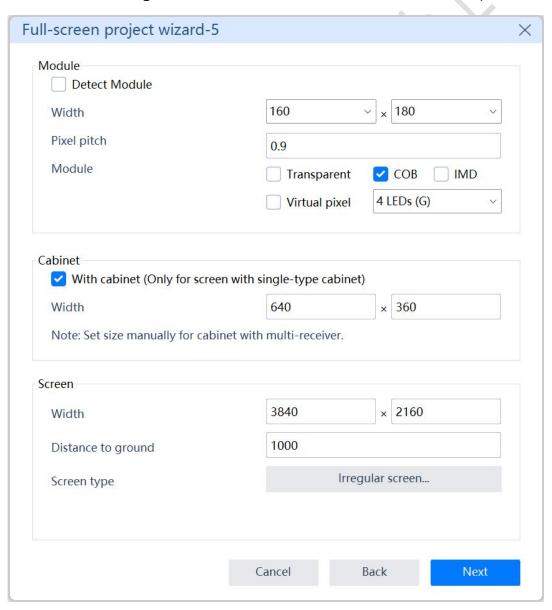


Fig.3-13 Full-screen project wizard-5

- With Cabinet (Only for screen with single-type cabinet): This checkbox is selected by default. Select this checkbox when the screen is composed of cabinets of the same type.
- Transparent: This checkbox should be selected when the horizontal pixel pitch is different from the vertical one.
- COB: Select this checkbox when COB module is used for the currently calibrated screen.
- IMD: Select this checkbox when IMD module is used for the currently calibrated screen.
- Virtual pixel: Select this checkbox when virtual pixel is used for the currently calibrated screen. Available options for this include: 4 LEDs (R), 4 LEDs (G), 4 LEDs (B), and 3 LEDs.
- **Pixel pitch:** *Calibration Pro* will recommend a proper pixel pitch once the receiver is detected. It is 0 by default, and you can enter a new pitch according to the real situation.
- Irregular screen settings

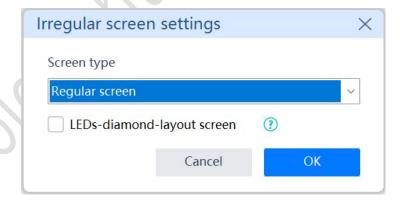


Fig.3-14 Irregular screen settings

• Curved screen: Select this checkbox when the screen is a curved one assembled by modules with the same LEDs in row and in column. You should also enter a value in the One-fold Width input box for a curved screen according to the real situation. See Figure 3-15.

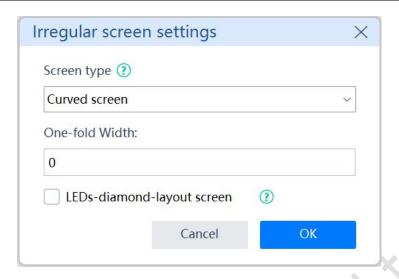


Fig.3-15 Curved screen settings

- ◆ Polygonal screen: Select this checkbox when the screen is an irregular one assembled by rectangular modules with the same LEDs in row and in column.
- ◆ LED dome screen: Select this checkbox when the screen is an irregular one assembled by modules with the same LEDs in row or in column. You will need to set the module layout for this type of screen according to the real situation.

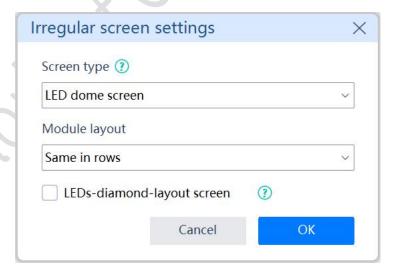


Fig.3-16 LED dome screen settings

◆ Sector-shaped screen: Select this checkbox when the screen is sector-shaped and is formed by identical triangular modules. You will need to select the corresponding module layout and enter a value in the Sector Width input box according to the real situation.

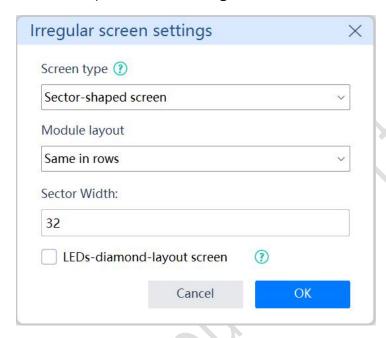


Fig.3-17 Sector-shaped screen settings

• **Distance to ground:** This field indicates the real distance between the bottom of the screen and the ground (unit: mm).

Click Next when you finish this step.

Step 6: Full-screen project wizard-6

You can set the margins of the screen in this step. See Figure 3-18.



Fig.3-18 Full-screen project wizard-6

In this step, the screen will display a white frame. In this window, you can enter the number of LEDs that will not be lit during calibration respectively in the four input boxes around the frame, according to the installation of the screen at site.

• When *Calibration Pro* has detected more than 1 sender, you will need to set the sender layout before continuing the wizard-6. See Figure 3-19.

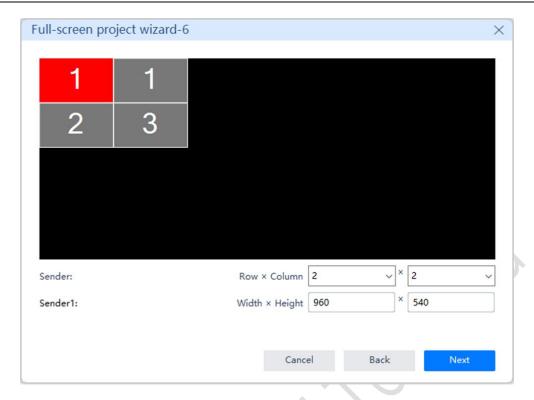


Fig 3-19 Sender layout settings

In this step, you should enter the rows and columns of the senders according to their real layout. Click a sender to set its size and position in the load area. You can also exchange the control area and position of two senders by dragging them in this interface. Once you have finished the sender settings, you can click **Next** to move on to the setup of **Margins** and do as described above. See Figure 3-19.

Once you have finished setting the margins, click **Next** to continue.

Step 7: Full-screen project wizard-7

You can name the calibration project and select a path for saving it in this step. See Figure 3-20.

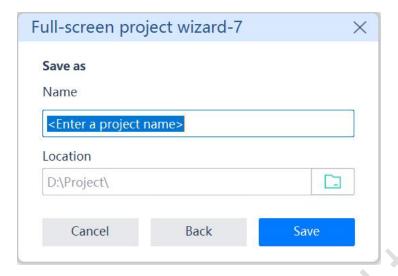


Fig.3-20 Full-screen project wizard-7

Name: Enter the name of the calibration project in this field.

Location: Select a path for saving the project file and data in this field.

Once you have finished this step, you can click **Save** to apply all the settings finished in the above 7 steps, and you will be prompted the recommended shooting distance (see Figure 3-21). Next, click **OK** to finish the full-screen calibration project setup and access the main interface for this project.

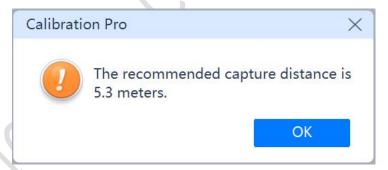


Fig.3-21 The reminding message for the recommended shooting distance

3.2.2 Project Settings

The main interface of the full-screen project is as shown in Figure 3-22. You should first set the basic parameters for the project in the **Project Settings** tab.

Colorlight

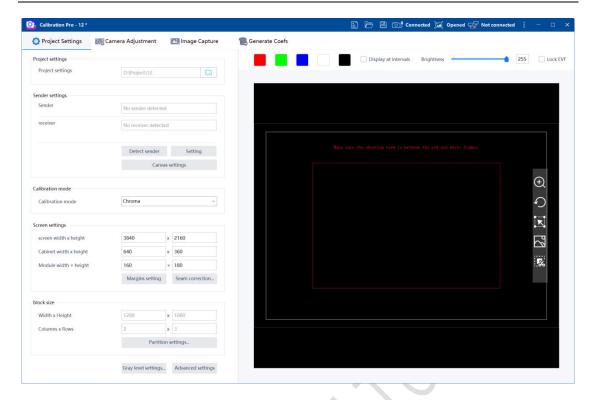


Fig.3-22 Main interface of full-screen project

3.2.2.1 Project Settings

The current project path will be displayed. Click the | Land to view the path.

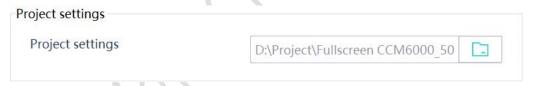


Fig.3-23 Project path

3.2.2.2 Sender Settings

In the **Project Settings** tab, *Calibration Pro* will automatically detect senders and receivers once the control PC has been connected, and the senders and receivers that have been detected will be shown in the tab. See Figure 3-24.

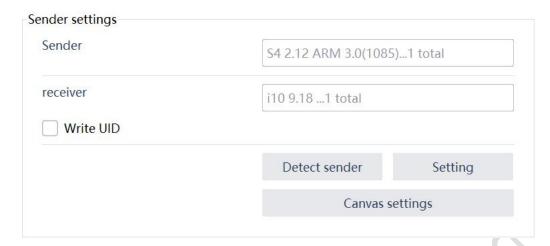


Fig.3-24 Basic information in sender mode

 Detect sender: Click Detect sender to detect the currently connected senders and receivers, and then you will be able to view information about the model, version number, and amount of the detected senders and receivers.

Setting:

1) Click **Setting** to bring up a pop-up window for setting the sender control mode. If there is only 1 or no sender detected, you can only enable or disable the option **Control LED display via USB/LAN (if sender supports)**. See Figure 3-25.

Fig.3-25 Control LED display via USB (if sender supports)

Note: When the serving end is connected, selecting **Control LED display via USB/LAN** will maximize the canvas to foreground, and deselecting the option will minimize the canvas to background.

2) If the amount of the senders that have been detected exceeds 1 (i.e., there are multiple senders cascaded for calibration), you will be able to set the layout of the senders in sender setup wizards.

Sender setup wizard-1

In **Sender setup wizard-1**, you can divide the screen into several partitions according to the load capacity of the sender. There are 2 ways available, as shown in Figure 3-26.

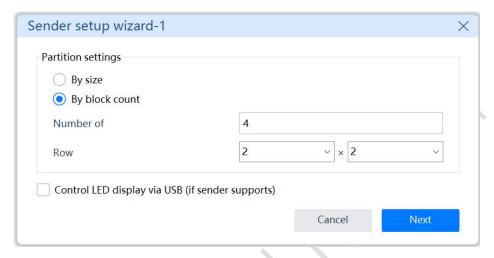


Fig.3-26 Sender setup wizard-1

- ① By size: Divide the screen based on the size of each partition.
- ② **By block count**: Divide the screen according to the rows, columns, and number of partitions you set.

Once you have set up the principle for screen partitions based on the real control area of the senders, you can click **Next** to continue.

Sender setup wizard-2

In this step, you can set up the partitions. See Figure 3-27.

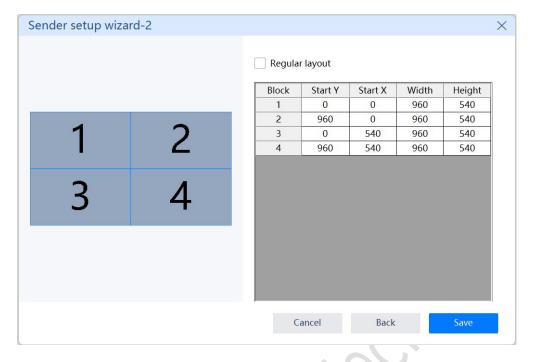


Fig.3-27 Sender setup wizard-2

- ◆ Regular layout: If you select this checkbox, you can only set the size of the sender-control area in a way that makes the partitions align in rows and columns. You can modify the size of each sender-control area individually after deselecting this checkbox.
- ◆ Reset: Click to reset the positions and size of the sender-control area.

Click Save once you have finished the setting process.

Canvas settings: If Control LED display via USB/LAN (if sender supports)
is not enabled, click the Canvas settings to set the starting coordinates
of the calibration image.

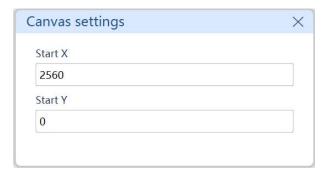


Fig.3-28 Canvas settings

3.2.2.3 Calibration Mode

Click **Switch** to choose a calibration mode. Available options include: **Brightness, Chroma**, and **Seam correction (only)**. See Figure 3-29.

Fig.3-29 Available calibration modes

3.2.2.4 Screen Settings

• Screen settings: Set the resolution (width × height) of the screen, cabinet and module.

Fig.3-30 Screen settings

• Margin settings: See Full-screen project wizard-6.

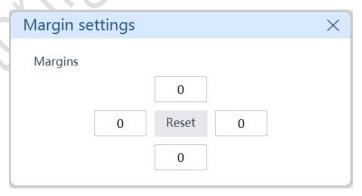


Fig.3-31 Margin settings

Seam Correction:

A dark line will appear when the seam between modules or cabinets is

too wide. Similarly, a bright line will appear when the width of the seam is less than the pixel pitch. Such dark or bright line issue can be fixed by adjusting the brightness of the LEDs on the target seam.

1)Seam correction: Click Seam correction in the Project Settings tab, and then select the Enable checkbox in the pop-up window to enable the seam correction function. See Figure 3-32.

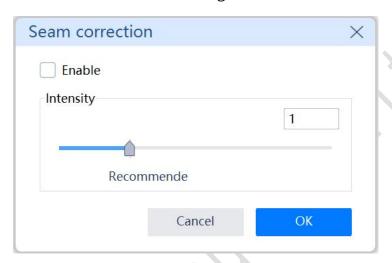


Fig.3-32 Seam correction settings

2)Intensity: If you find the correction effect not as expected, you can move the slider below to change the adjusting intensity for seam correction. The default intensity is 1. If the original dark (or bright) line turns to be too bright (or too dark) after seam correction, you can lower the intensity appropriately. However, if you find the line still relatively dark (or bright) after the correction, you can increase the intensity appropriately.

Note: If you have selected **Seam correction (only)** before, you cannot perform the brightness/chroma calibration, and the seam correction function will be enabled by default. See Figure 3-33.

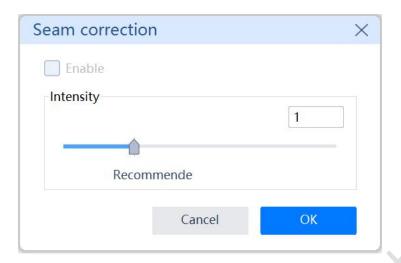


Fig.3-33 Seam correction (only) settings

3.2.2.5 Partition Size

Regular screen calibration

Calibration Pro will recommend a proper partition size according to the size of the screen. You can click **Partition settings** to change the partition size if necessary.

Fig.3-34 Partition size settings

Note:

1) For a regular screen by default, 16 LEDs will overlap between partitions, and for a COB screen, the software will automatically recommend an appropriate number of overlapping pixels based on the module size. The overlapping pixels apply to the right and bottom sides of each partition and only takes effect when there is more than one column or row. Overlapping pixels are not applied on the rightmost column (row direction) and bottom-most row (column direction).

2) Once you have finished modifying the partition size, the number of intervals will automatically be calculated. You can find the number of photos that will be captured in each partition. See Figure 3-35.

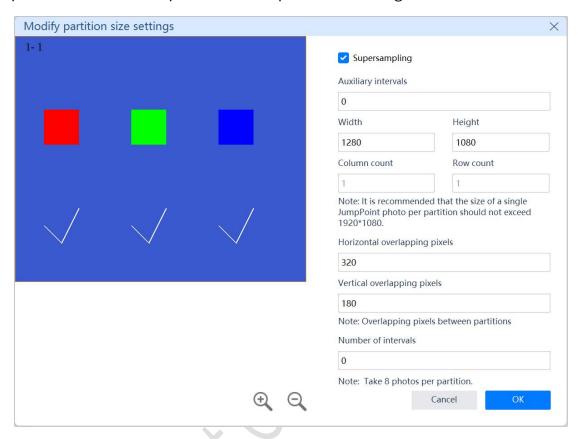


Fig.3-35 Modify the partition size

- 3) **Supersampling** can be enabled to reduce the impact of display coupling on calibration. The **Auxiliary intervals** is 1 by default and is modifiable.
- LEDs-diamond-layout screen

If LEDs-diamond-layout screen has been selected before, an additional option Photo capture settings will be available in the Modify partition size settings window. You can select photos captured at intervals for metering based on your need.

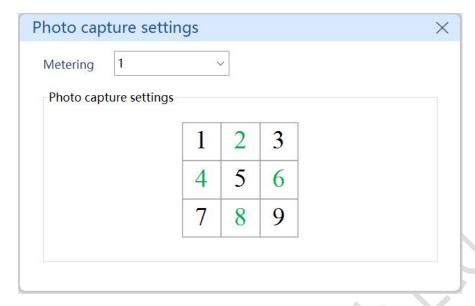


Fig.3-36 Photo capture settings for screen with diamond-layout LEDs

You can select a partition from the **Partition preview** window or from the right side of the **Project Settings** tab. The selected partition will then be displayed with a white frame on the LED screen.

LED dome screen and sector-shaped screen calibration

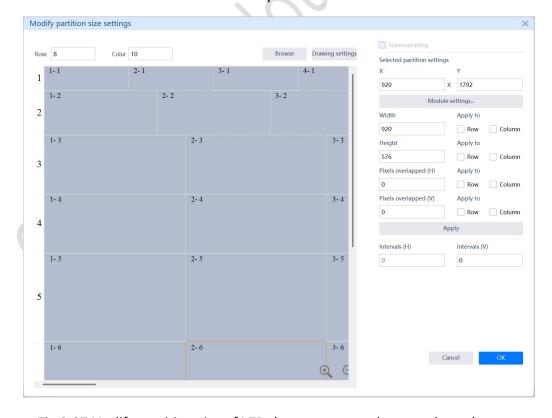


Fig.3-37 Modify partition size of LED dome screen and sector-shaped screen

- 1) In the window, you can see the recommended partition size based on the module size. You can modify the size and apply the new partitions to corresponding rows or columns. You can also modify the partition size by changing the row count and column count.
- 2) By default, there is no pixel overlapping both horizontally and vertically. You can modify the number according to your need and then apply the change to corresponding rows or columns.
- 3) The default horizontal and vertical intervals are recommended results from *Calibration Pro*, and you can modify them manually according to your need.
- 4) If you have selected **Same in rows** (i.e., the modules are the same horizontally) before, you should click **Drawing settings** and then enter the receiver row count in corresponding field. Next you can import the actual pixel drawing table.

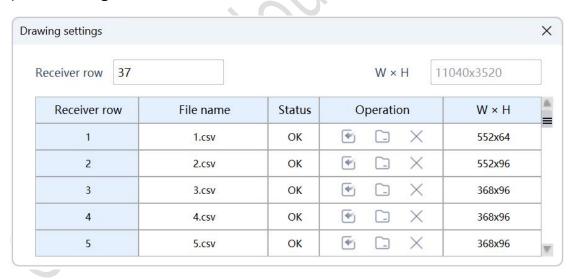


Fig.3-38 Drawing settings when modules are the same horizontally

5) If you have selected **Same in columns** (i.e., the modules are the same vertically) before, you should click **Drawing settings** and then enter the receiver column count in corresponding field. Next, you can import the actual pixel drawing table.

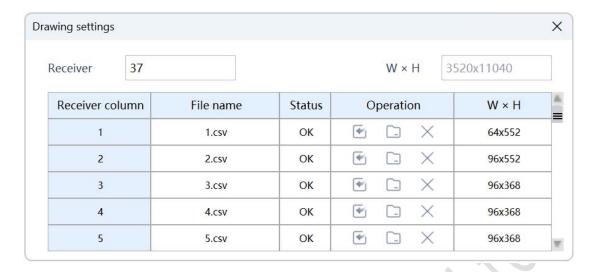


Fig.3-39 Drawing settings when modules are the same vertically

6) If you have selected **Same in rows** before, you can click **Module settings** and then import the actual LEDs count in each row.

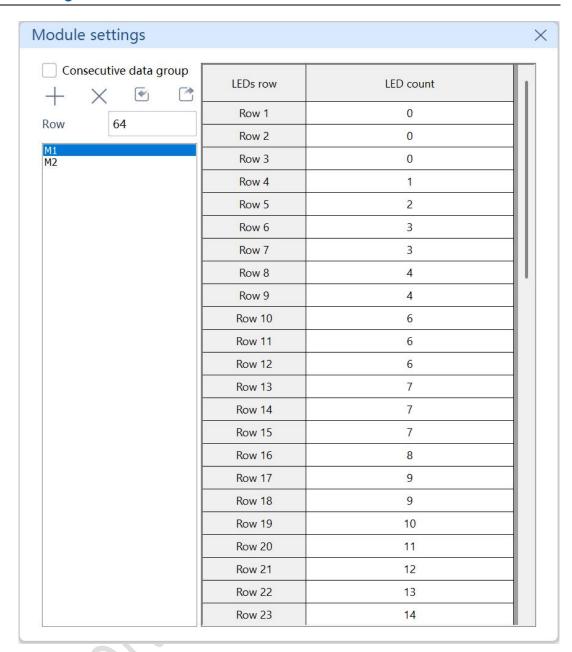


Fig.3-40 Module settings when modules are the same horizontally

7) If you have selected **Same in columns** before, you can click **Module settings** and then import the actual LEDs count in each column.

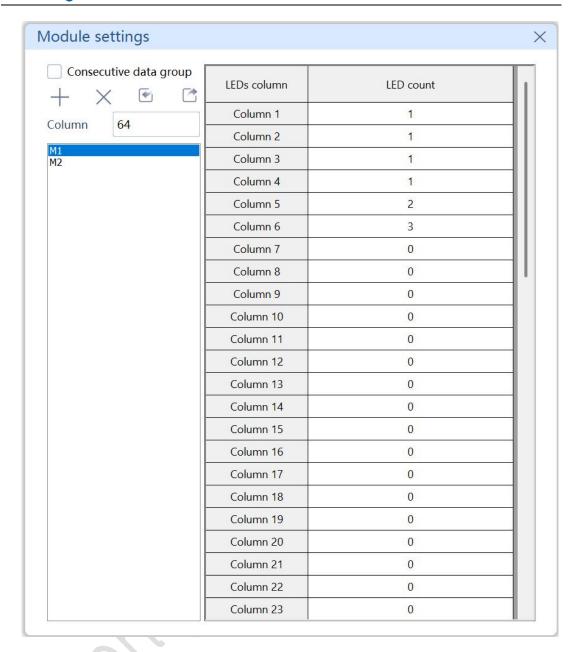


Fig.3-41 Module settings when modules are the same vertically

3.2.2.6 Gray Level

1) High Brightness calibration:

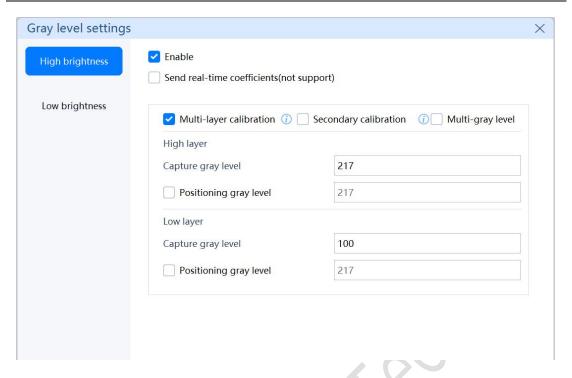


Fig.3-42 High brightness: multi-layer calibration

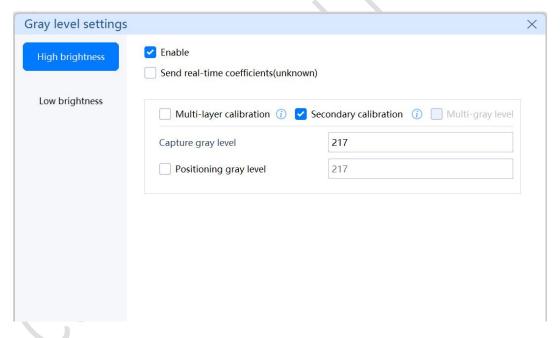


Fig.3-43 High brightness: secondary calibration

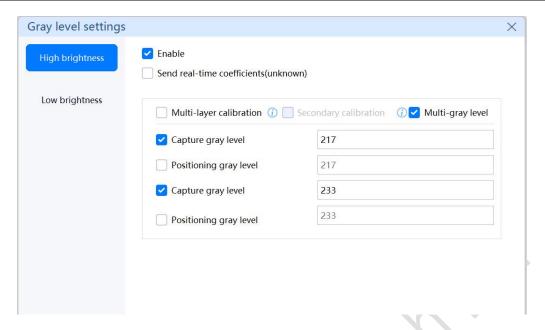


Fig.3-44 High brightness: multi-gray level

- Secondary calibration/ Multi-gray level: Once you have selected this option, the currently selected gray level will be calibrated for the second time to generate the optimal correction coefficients. If Multi-gray Level is enabled, the two selected gray levels will be calibrated, and calibration coefficients for smooth gray level transitions will be generated. These two functions cannot be enabled at the same time.
- Gray level: You can enter the gray level you want to display on the screen
 when the camera is capturing photos. If it is multi-gray level calibration,
 you must finish capturing the gray level before obtaining the
 corresponding parameters. You can select the checkbox in this field to
 decide whether to capture the corresponding gray level or not.

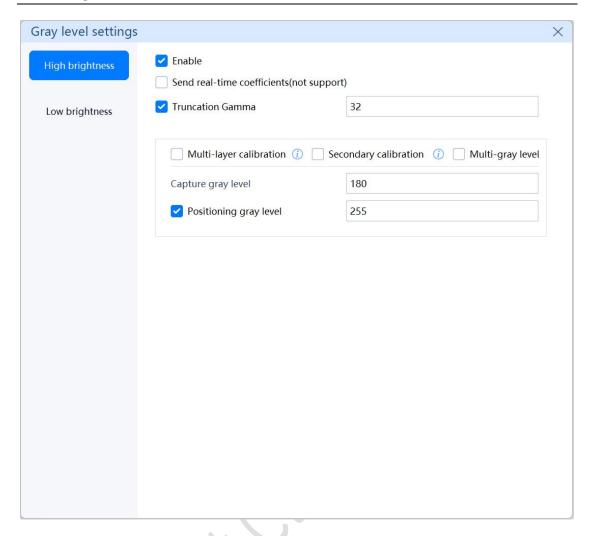


Fig.3-45 Truncation Gamma & Poisoning gray level

- Low brightness truncation: If supported by the receiver, this option will be available in the window together with the setting field for Truncated gamma.
- Positioning gray level: Supports capturing low gray level using the metering data gained in high gray level. Switching the on/off status of this function or modifying this value requires re-metering.
- Send real-time coefficients: When this option is selected, and if the
 receiving card supports this feature, the coefficients will be directly sent
 to the receiving cards for a higher calibration efficiency.

2) Low brightness calibration:

• Chip type: Options include XM, SCL6bit, SCL16bit, ICN2260, ICN2270,

LYD23221.

- Gamma capture: Set the Gamma value (64 by default) that is needed to be captured.
- Initial value: You can set the coefficients according to the color temperature and initial gray level you need.
- Capture times: You can set the times for iterative calibration. By default, it is 3 times.
- Step: This should not exceed the set initial value.

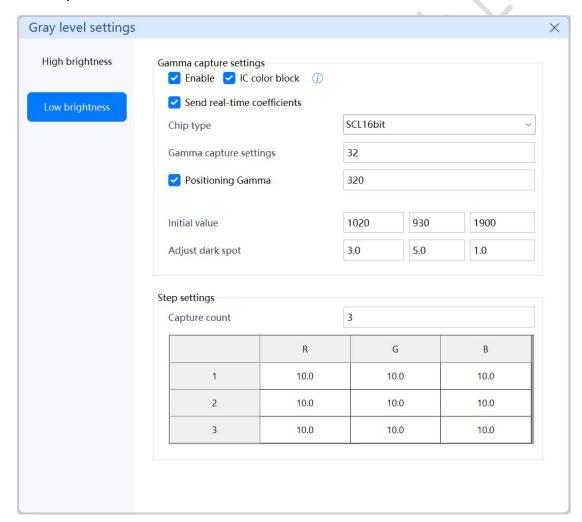


Fig.3-46 Low brightness

• IC color block: You can calibrate the IC color block separately in low brightness when this option is selected.

- Positioning Gamma: Supports capturing a Gamma value by metering with a bigger Gamma value. Switching the on/off status of this function or modifying this value requires re-metering.
- Send real-time coefficients: When this option is selected, and if the receiving card supports this feature, the coefficients will be directly sent to the receiving cards for a higher calibration efficiency.

3.2.2.7 Effects Settings

You can click **Advanced settings** to access the corresponding interface. See Figure 3-47.

- **De-vignetting:** Eliminate dark clusters caused by lens halo.
- Color moiré removal: Eliminate the colored moiré caused by capture.
 (Enabled by default.)
- Pixel alignment: Correctly sort misaligned pixels.
- Interchangeable after calibration: This option is selected by default to enable eliminating differences between the partitions after calibration.
- Image dust off: This option is selected by default to enable eliminating the post-calibration bright spots caused by dust from camera/lens.
- Ambient light intensity: Select Strong, Weak, or None according to the real situation of the ambient light at site.
- Dead pixel rate: This field shows the ratio of dead pixels to the entire screen. You can adjust the ratio based on the actual situation. Note that if the actual dead pixel rate exceeds the rate you have set, the analysis will fail.

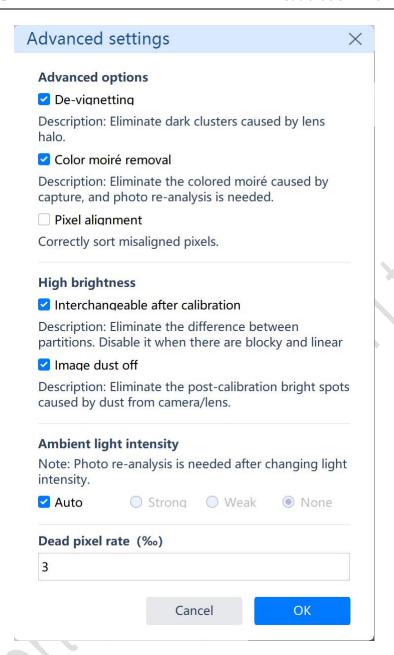


Fig.3-47 Effects settings for the CCM-6000 camera

If you have selected **COB** before, the available options in **Effects settings** will not include **Interchangeable after calibration** and **Image dust off**, as shown in Figure 3-48.

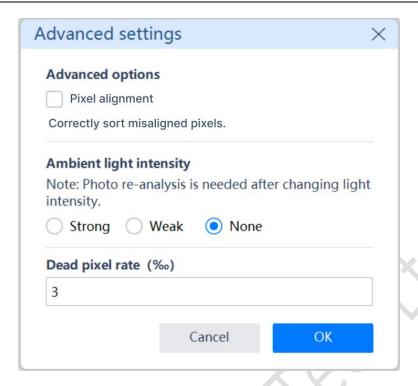


Fig.3-48 Effects settings for CCM6000 (COB module)

 Curved image correction: This function supports eliminating the curved surface in the image caused by the camera. This is only available for polygonal screen, LED dome screen, and sector-shaped screen.

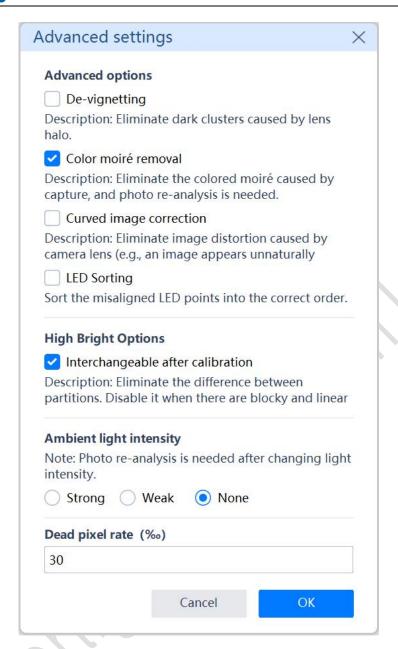


Fig. 3-49 CCM6000_LED dome screen_non-COB_effect settings

3.2.3 Camera Adjustment

- 1) Adjust camera for framing: Position the camera so that it faces the center of the screen. Adjust the camera's height to align it with the target screen area. If the screen is positioned too high or too low, it is recommended to adjust the camera's height to align it with the user's view. Tools can be used to raise the camera if needed.
- 2) Select the central partition of the screen as the area for adjusting camera.

Adjust the camera's capturing distance so that the shooting area aligns with and fills the camera frame. Make sure the shooting view is between the red and white frames.

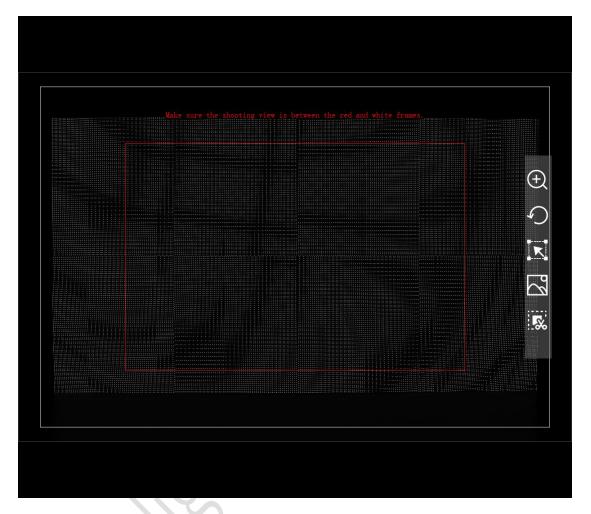


Fig.3-50 Adjust camera for framing

3) Select one color from **R**, **G**, and **B**, and then select **Display at intervals** and **Lock EVF**. Then, adjust the focus ring on the lens to ensure a clear focus for framing. Next, zoom in on the image in the camera frame using the tool of the camera or the mouse wheel to get a view on the LEDs. You can adjust the focus of the lens appropriately for a clear view. The assistance tools can be found on the right side of the camera frame, including Zoom in, Restore, Zoom to selected area, View photo, and Crop.

A clear focus ensures that the lamp beads in the image are separated from each other, and the brightness of each individual lamp bead gradually

darkens from the center to the periphery.

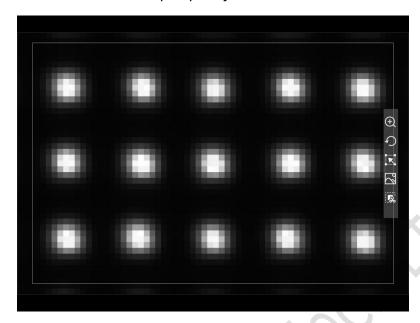


Fig.3-51 Lamp beads in the image

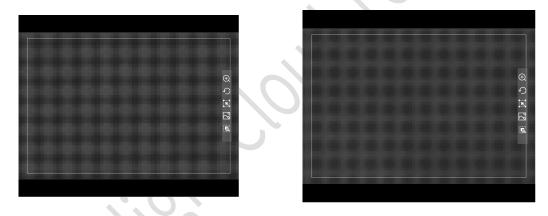


Fig.3-52 Out of focus

4) Metering component: Metering component can be different depending on the calibration mode you select. If you have selected **Seam correction (only)**, you only need to conduct metering for Green; If you have selected **Brightness** (including **Receiver low brightness compensation** and **Chip low brightness**), you need to conduct metering for Red, Green, and Blue; If you have selected **Chroma**, you need to conduct metering for 8 color components, namely, rX, rY, gX, gY, gZ, bX, bY, and bZ.

	Shutter	LED size	Result
rY	0.20		Unknown
gY	0.20	0	Unknown
bY	0.20		Unknown

Fig.3-53 Metering components for **Seam correction (only)**

	Shutter	LED size	Result
rY	0.20	0	Unknown
gY	0.20	0	Unknown
bY	0.20	0	U <mark>nknown</mark>

Fig.3-54 Metering components for **Brightness** (calibration)

	Shutter	LED size	Result
rX	0.20	0	Unknown
rY	0.20	0	Unknown
gX	0.20	0	Unknown
gY	0.20	0	Unknown
gZ	0.20	0	Unknown
bX	0.20	0	Unknown
bY	0.20	0	Unknown
bZ	0.20	0	Unknown

Fig.3-55 Metering components for **Chroma** (calibration)

- 5) Auto metering: Select the aperture and the current focus ring value, and then click **Start**. *Calibration Pro* will automatically adjust the shutter time for normal metering. Once the shutter time has been adjusted appropriately, you will be prompted "Succeeded. Switch to "Image Capture" for capturing images.
- 6) Manual metering: Select **Manual metering** in the **Camera Adjustment** tab. Then, select the aperture and the current focus ring value. Next, adjust the shutter time manually and then click **Detect**. If you are prompted "Too dark"

- or "Too bright", you can increase or decrease the shutter time respectively and then click **Detect**. You can repeat this step until you get a normal results.
- 7) Multi-layer calibration: You need to conduct metering for each layer.
- 8) Secondary calibration: Metering is required for both calibrations. After you have finished the first-time calibration, you should enable calibration again and conduct metering for the second-time calibration.

3.2.4 Effect Debugging

If the project is for chip low brightness calibration, you can perform **Effect Debugging** for adjusting the step. In this tab, you can click **Start auto-adjustment**, and then *Calibration Pro* will automatically adjust the step to an appropriate value.

If **Positioning Gamma** is enabled, the set positioning Gamma value will be displayed during the first capture in **Auto adjustment** mode, and will be hidden thereafter.

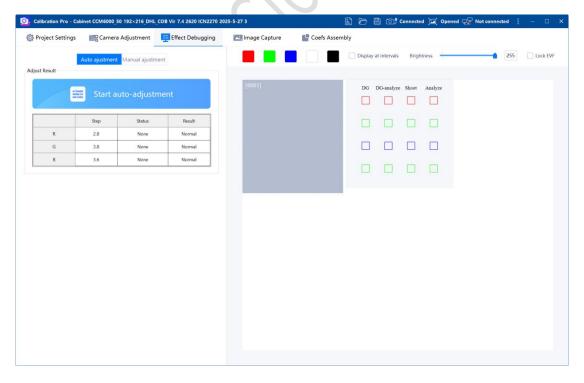


Fig.3-56 Auto step adjustment

You can also manually adjust the step if you find the auto adjustment effect

not as expected. You can enter step values for R, G, and B respectively, and then click **Apply coefs**. The larger the step value, the greater the adjustment to the initial value will be.

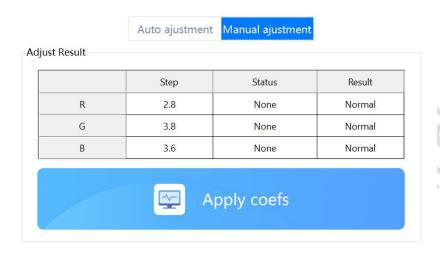


Fig.3-57 Manual adjustment

3.2.5 Image Capture

3.2.5.1 Capture Manually

Once you have finished setting the Camera Adjustment in high brightness or Effect Debugging in low brightness, you can click Image Capture to access corresponding tab. In the tab, select a gray level and then select the shooting area. Align the camera with the target shooting area and then click Shoot. *Calibration Pro* will automatically control the camera to capture images of the target gray level.

Note:

- ① When **Supersampling** is enabled and auxiliary intervals is not 0, the image with auxiliary intervals will be displayed and captured first before capturing the target image.
- ② When ambient light exist and the intensity has been set before, a black image will be displayed and captured first before capturing the target image.

You can place the mouse on the shooting area to view the shooting and analyzing progress.

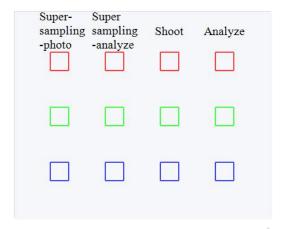


Fig. 3-58 Capturing image_Supersampling

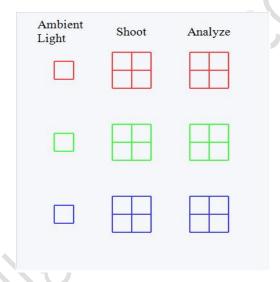


Fig. 3-59 Capturing image_Ambient light

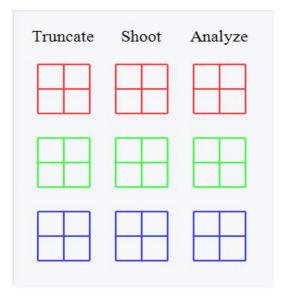


Fig. 3-60 Capturing image_Low brightness truncation

Fig.3-61 Capturing image_Positioning gray level

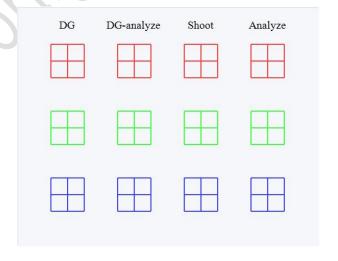
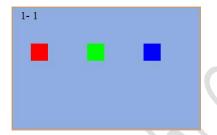



Fig. 3-62 Capturing image_Positioning Gamma

Note: When Positioning gray level / Positioning Gamma and Supersampling is enabled (auxiliary intervals is not 0) at a time, the image in the positioning gray level/Gamma value with auxiliary intervals will be displayed and captured first. However, the interface only displays the progress of Supersampling image capture and Supersampling analysis. (See Figure 59 & 60.)

When all components of one color have been captured, the capture area will show a rectangle in the corresponding color. Once the analysis of the components is completed, a check mark will appear below the corresponding color. Once all colors have been captured, the background color of the area will change to light blue (see Figure 3-63). When the analysis of all colors is completed, the background color will change to dark blue (see Figure 3-64).

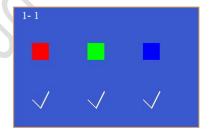


Fig.3-63 Shooting complete

Fig.3-64 Shooting and analysis complete

Virtual pixel calibration: For brightness calibration, the virtual pixel will be added after every RGB captured (color component gvY will be added in the case of 4 LEDs virtual Green). For chroma calibration, the virtual pixel will be added after every RGB captured (color components gvX, gvY, and gvZ will be added in the case of 4 LEDs virtual Green).

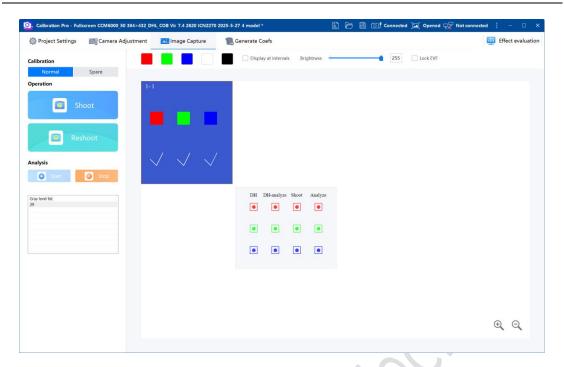


Fig.3-65 Shooting and analyzing complete

Crop: Select **Auto crop** in the **Project Settings** tab to let *Calibration Pro* automatically select partition before shooting each partition of the full screen. Click the icon for crop on the right side to freely select area within the camera frame. You can modify an existing cropping box by selecting its edges or center points. To delete a cropping box, right-click on it.

Fig.3-66 Crop

3.2.5.2 Automatic Multi-layer Calibration

When Multi-layer calibration is enabled (without Secondary calibration and Multi-gray level calibration), and Automatic calibration is selected, the window for automatic multi-layer calibration will pop up and perform automatic multi-layer calibration upon clicking on Shoot.

Fig.3-67 Automatic calibration checkbox

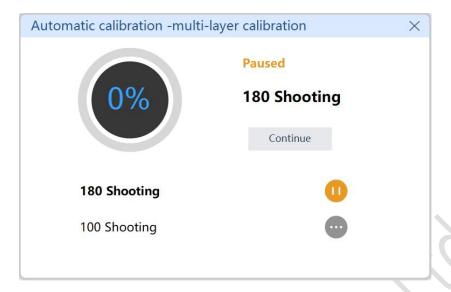


Fig. 3-68 Automatic multi-layer calibration

3.2.5.3 Automatic Secondary / Multi-layer Calibration

When **Secondary calibration** is enabled, and **Automatic calibration** is selected, the window for automatic secondary calibration will pop up and perform automatic multi-layer calibration upon clicking on **Shoot**.

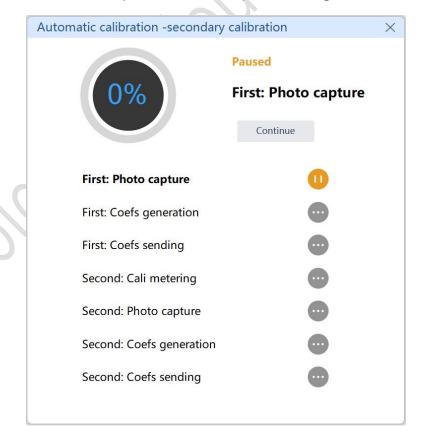


Fig.3-69 Automatic calibration -secondary calibration

3.2.5.4 Spare Calibration

Click **Calibration object** and select **Spare**. The user interface will change to the interface for spare calibration. Select the partition area to which you want to replace with spares. Then, click **Shoot** to start the calibration.

3.2.6 Generate Coefs

3.2.6.1 Brightness After Calibration

Once the shooting and analyzing have been completed, you can access the interface for generating coefficients. Next, you can click **Generate luminance** map to view the luminance map of the current gray level. The suggested brightness loss will also be displayed.

• Chroma calibration mode: The brightness of Red, Green, and Blue will share the same brightness loss after the calibration.

Fig.3-70 Chroma calibration

 Brightness calibration / Seam correction (only): The brightness loss of Red, Green, Blue, and target color can be set individually.

Fig.3-71 Brightness calibration

3.2.6.2 Settings

• In brightness calibration mode, you can select a target color for settings.

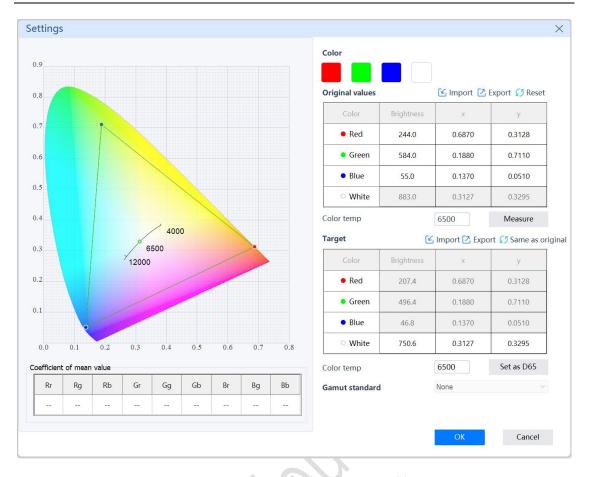


Fig.3-72 Target settings for brightness calibration

- ◆ Color: Click on a colored box to let the screen display the corresponding color.
- ◆ Original values: You can measure the original values by clicking Measure after connecting to the color meter. Besides, you can also import the existing brightness value and coordinates, or double-click the value to modify (the original values of all gray levels can be set as needed; you can also set the values for the higher gray level and let the software automatically calculate the values for the lower gray level). Calibration Pro will calculate the white point's color temperature based on the original values. You can export the original values by clicking Export. If you don't need to adjust the target temperature, you can simply skip this step.
- ◆ Target: You can adjust the coordinates of the target white point in this

sheet. Click **Import** to import the existing target values. Clicking **Export** allows for saving the new target values. You can also click **Set as D65** to set the color temperature to the standard 6500K. In addition, you can double-click the brightness, x, and y of White in the sheet, and then enter the new values.

◆ Coefficient average: Shows the average value of the color components generated after the latest calibration.

In brightness calibration, when the Brightness calibration sends chroma coefs is enabled, you can set the target color gamut, as shown in the figure below.

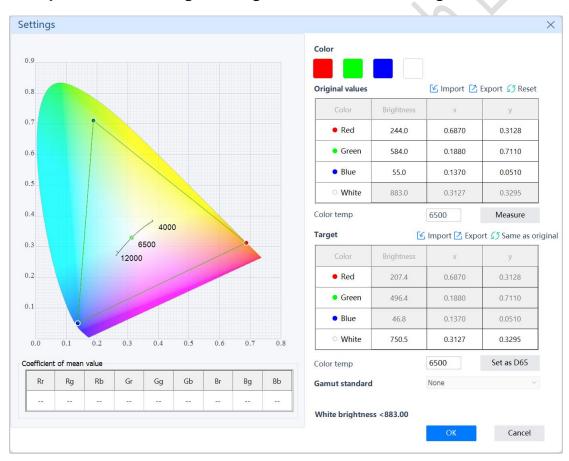


Fig.3-73 Brightness calibration sends chroma coefs

3.2.6.3 Color Gamut Settings

In **Chroma calibration** mode. You can configure the color gamut, color temperature, color block intensity, compensation intensity, white first, and high-precision calibration.

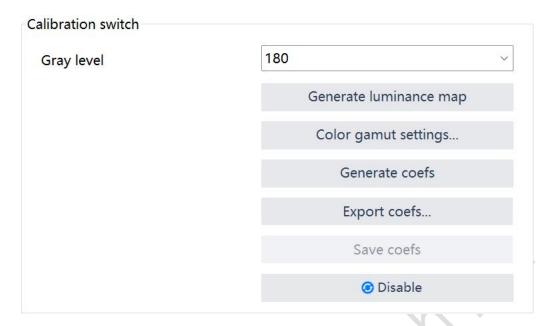


Fig.3-74 The option Color gamut settings

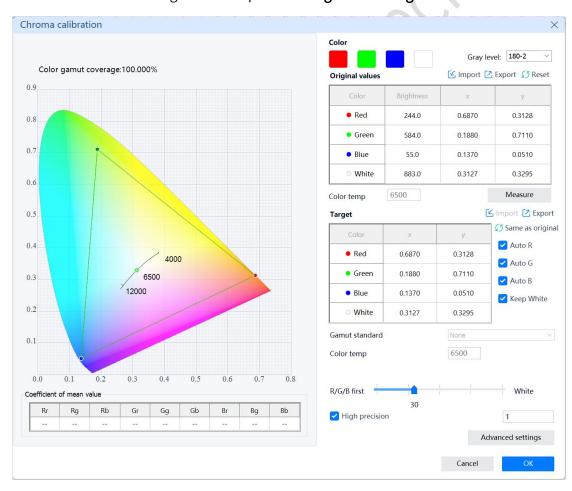


Fig.3-75 Color gamut settings interface

 Color: Click on a colored box to let the screen display the corresponding color.

- Gray level: Select the gray level for the settings.
- Original values: You can measure the original values by clicking Measure
 after connecting to the color meter. Besides, you can also import the
 original screen brightness and color gamut, or double-click the input
 boxes to modify the value. Clicking Export allows for exporting and
 saving the original values. If you don't need to modify the values, you
 can simply skip this step.
- Target: You can adjust the target color gamut and the color temperature coordinates in this sheet. By default, the values in this sheet are calculated automatically. You can deselect **Auto** and double-click the input boxes to enter the new values if necessary. Besides, you can also apply the standard color gamut settings (*Calibration Pro* provides parameters of sRGB, AdobeRGB, PAL, NTSC, Rec.601, Rec.709, Rec.2020, and DCI-P3). If you select **Same as original**, there will not be color gamut loss.
- R/G/B first or White first: You can move the slider towards R/G/B first or White first to adjust the calibration effect, choosing whether you want the effect for the Red/Green/Blue colors to be greater than that for White, or vice versa.
- Advanced settings: In Advanced settings, you can adjust the Color block intensity (only available when you have selected COB) and the Compensation intensity.

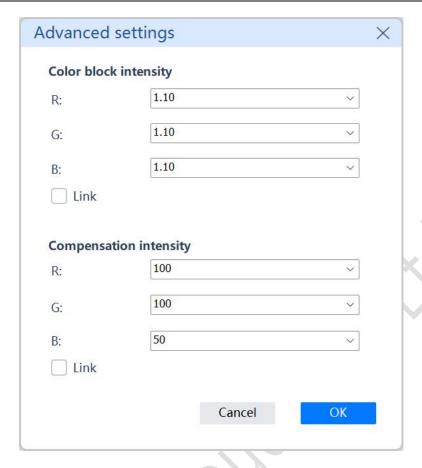


Fig.3-76 Advanced settings

- Color spot reduction: This option is available during chroma calibration for regular screen (COB not selected). You can select this option to optimize the color spot issue after the calibration.
- Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.
- High precision: This function is recommended when you find the calibration effect of color Red/Green/Blue is better than that of color white, or vice versa. The coefficient formats are 9wPCoef and 12wPCoef (4 LEDs virtual).

3.2.6.4 Sending and Exporting Coefficients

1) Spare calibration

Click **Calibration object** > **Switch** and then select **Spare**. The coefficients will be generated then.

2) Gradient settings

Select **LED dome screen** and **Same in rows** in the project wizard. Then, click **Gradient settings** to set the gradient of the LED dome screen.

- Reference pitch: The reference for automatically calculating the pixel pitch of the first and last row.
- Start row pitch / End row pitch: This value will be saved individually according to the actual pixel pitch between modules in the first / last row.
- **Auto**: Automatically calculate the pixel pitch of each row based on the reference pixel pitch, start-row pixel pitch, and end-row pixel pitch.
- Module row count: This valued can be calculated based on the set module layout.
- Confirm: Click Confirm to save the new pixel pitch data and update the pixel pitch table located in the project file path accordingly.
- Adjust pitch: Select this checkbox to adjust the gradient of the row pixel pitch based on the pixel pitch value of the module on each row.

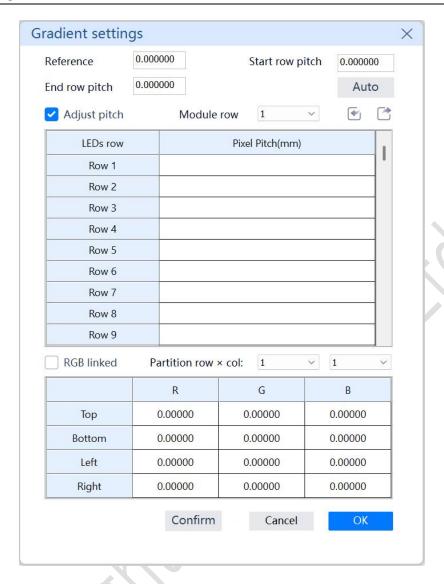


Fig.3-77 Gradient settings for the same module in rows

Select **Same in columns** in the project wizard. Then, click **Gradient settings** to set the gradient of the LED dome screen.

- Reference pitch: The reference for automatically calculating the pixel pitch of the first and last row.
- Start col pitch / End col pitch: This value will be saved individually according to the actual pixel pitch between modules in the first / last column.
- Auto: Automatically calculate the pixel pitch of each column based on the reference pixel pitch, start-column pixel pitch and the end-column

pixel pitch.

- Module column count: This valued can be calculated based on the set module layout.
- Confirm: Click Confirm to save the new pixel pitch values and update the pixel pitch table located in the project file path accordingly.
- Adjust pitch: Select this checkbox to adjust the gradient of the column pixel pitch based on the pixel pitch value of the module on each column.

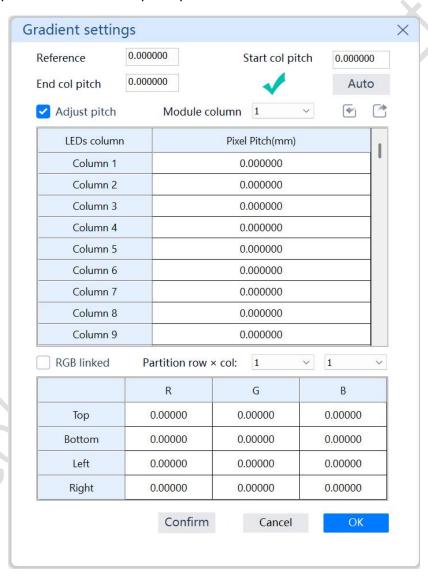


Fig.3-78 Gradient settings for the same module in columns

Partition row / Partition column: Select the partition row and column,
 and then set the actual gradient of the borders of the corresponding

row/column so as to adjust the gradient between partitions.

3) Generate luminance map

You can click **Generate luminance map** and then control the screen color and brightness on the control bar. In addition, you can also select **Zoom in**, **Zoom out**, or **1:1** to control the display of the selected gray level of the luminance map. If you want to view the distribution of the shooting area on the screen, you can select the **Show partition line** checkbox.

Fig.3-79 Display control bar

• In the chroma calibration mode, all of the color components will appear on the upper left corner of the luminance map. You can select one component to switch to its luminance map. When the screen resolution exceeds 8K (7680 × 3840), the color components will not be shown and you can only switch the luminance map in the display control bar.

Fig.3-80 Luminance map of color components

Fig.3-81 Luminance map of color components of 4 LEDs (Green)

4) Generate coefs

You can obtain coefficients of all gray levels by clicking on **Generate coefs**. Once the message **Generate Coefficients successfully** appears, you can save or export the coefficients.

5) Export coefs

You can click **Export coefs** and then select **Export all**, **Export coefs by sender**, or **Export by partition** based on your need to save the calibration coefficients.

Note: For low brightness calibration, you should select the coefficients from the last iterative capture so as to obtain the final effect. After modifying the color gamut settings or the target settings, you need to generate the new luminance map to let the modification take effect.

For virtual pixel calibration, the coefficients from brightness calibration will be generated in .4wCoef format, and those from chroma calibration will be generated in .12wCoef format.

6) Send coefs

Click **Save coefs** to choose whether to save the coefficients to all, specified area, and to receiver or modules. Once the coefficients have been sent, the corresponding calibration effect will be automatically applied.

7) Calibration switch

The calibration status will be updated after receiver detection. You can select Coefficient source, and Calibration mode, enable Chip low brightness, Simulated by PC, and Multi-layer calibration; and adjust Screen display to check the effect.

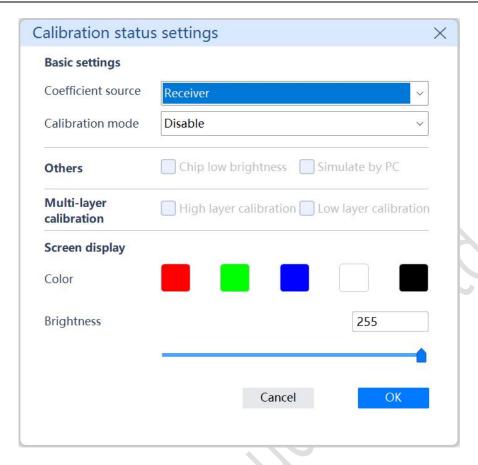


Fig.3-82 Calibration switch

3.2.7 Effect Evaluation

In **Brightness calibration** mode, once a partition has finished calibration, the calibration parameters can be saved to receivers. With the calibration function enabled, you can capture the calibrated partition again to evaluate the calibration effect. You can access the evaluation window by clicking on the icon at the right end of the toolbar.

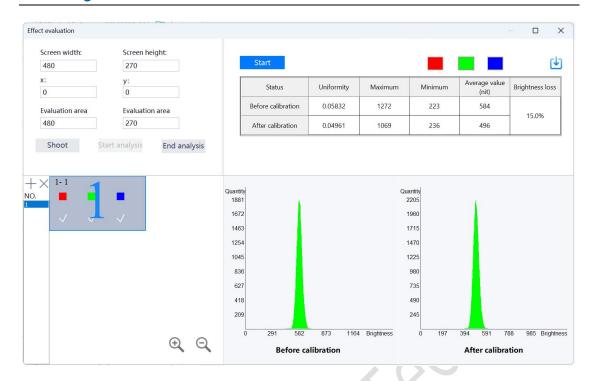


Fig.3-83 Effect evaluation window

- 1) The **Screen width** and **Screen height** represent the width and height of the full-screen of the current project.
- 2) The \mathbf{x} and \mathbf{y} indicate the initial coordinates of the selected partition. Modifying the coordinates can change the evaluated partition. Also, you can add partitions for evaluation by clicking on the + icon above the evaluated partition list. Each partition is seen as an individual evaluation area, which is marked by a number that corresponds to its number in the evaluation list.
- 3) Select one evaluated partition from the list, and then adjust the tripod head to make the camera face the lit part of the screen. Then, with the calibration function enabled, click **Shoot** to let *Calibration Pro* capture and analyze images of the evaluated partition. Next, click **Start** to begin the evaluation. The right side of the interface will display a statistical table that contains data before and after the calibration respectively. Below the table are 2 histograms representing the situation before and after the calibration.
- 4) The statistical table shows information about the evaluated partition

before and after calibration, including **Uniformity**, **Maximum** (brightness), **Minimum** (brightness), **Average value** (nit), and **Brightness loss**.

5) You can view the statistical information and the layout of the LEDs (Red, Green, and Blue) by clicking on the icons, and respectively.

Then, you can click the icon to save the evaluation report to your PC.

3.3 Cabinet Calibration

3.3.1 New Cabinet Project

Step 1: Cabinet project wizard-1

In the start screen of *Calibration Pro*, click **New cabinet project** to access the **Cabinet project wizard-1**. Then, select a way for control PC connection.

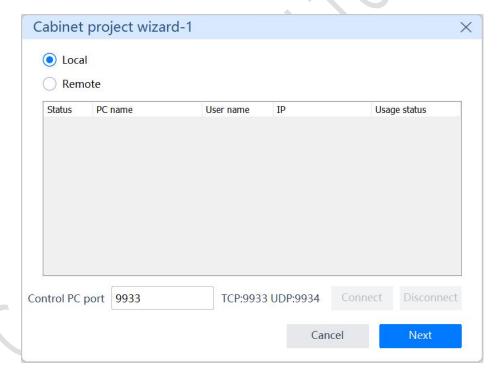


Fig.3-84 Select Local

Step 2: Cabinet project wizard-2

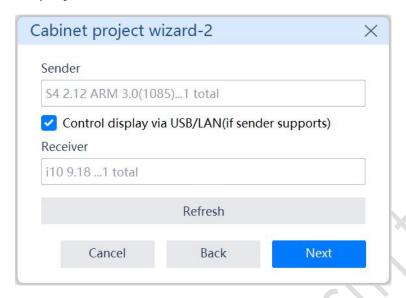


Fig.3-85 Cabinet project wizard-2

Note: You can refer to Full-screen project wizard-2 for reference.

Step 3: Cabinet project wizard-3

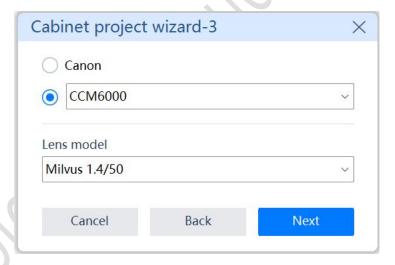


Fig.3-86 Cabinet project wizard-3

Note: You can refer to Full-screen project wizard-3 for reference.

Step 4: Cabinet project wizard-4

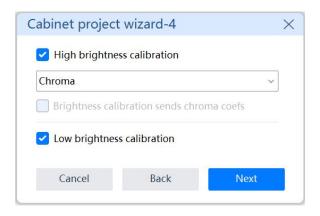


Fig.3-87 Cabinet project wizard-4

Note: You can refer to Full-screen project wizard-4 for reference. High brightness calibration and Low brightness calibration can be selected and performed at the same time.

Step 5: Cabinet project wizard-5

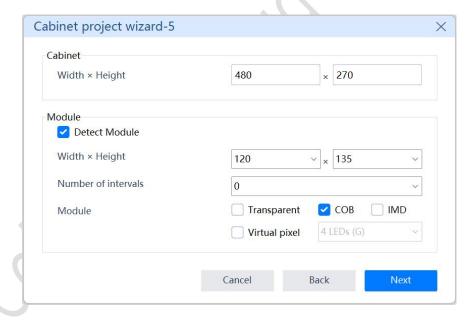


Fig.3-88 Cabinet project wizard-5

- (Cabinet) Width/Height: The resolution of the currently calibrated cabinet.
- (Module) Width/Height: The resolution of the currently calibrated module.
- Number of intervals: Calibration Pro will recommend a number once the cabinet width and height have been adjusted. You can also modify it

manually.

- **Transparent:** This checkbox should be selected when the horizontal pixel pitch is different from the vertical one.
- COB: Select this checkbox when COB module is used for the currently calibrated screen.
- IMD: Select this checkbox when IMD module is used for the currently calibrated screen.
- Virtual pixel: Select this checkbox when the calibrated screen employs virtual pixel. Available options include: 4 LEDs (R), 4 LED (G), 4 LED (B), and 3 LEDs.

Step 6: Cabinet project wizard-6/7

1) Regular single cabinet:

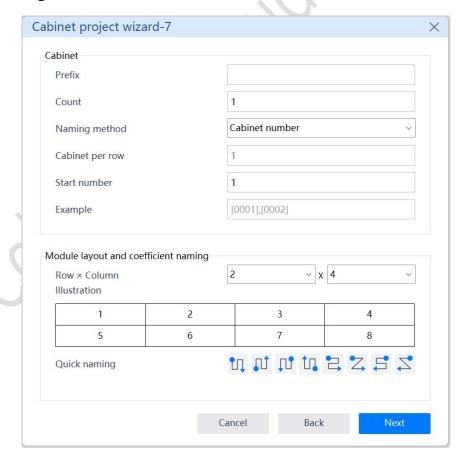


Fig.3-89 Cabinet project wizard-6/7

- **Prefix:** Enter the prefix for the name of the new cabinets.
- Count: The number of cabinets that have been added to the cabinet list automatically.
- Naming method: Available options include: Cabinet number,
 Row-Column, and Column (ABC)-Row.
- Cabinet per row: Enter the number of cabinets on each row. The number you enter in this field will automatically change the cabinet name.
- Example: This field shows the example of a cabinet name automatically based on the Prefix, Naming method, and Cabinet per row you set before.
- Module layout and coefficient naming Row × Column: Defines the module layout (row × column) as needed. The coefficient files will be generated accordingly.
- Module layout and coefficient naming Illustration: This shows the layout of modules and the corresponding names.
- Module layout and coefficient naming Quick naming: Provides options for naming the module coefficients in a quick way.
- 2) Screen split calibration:

If **CCM6000** (or other industrial camera model) and **COB** is selected in wizard-5, **Screen split calibration** will be available in wizard-6.

Fig.3-90 Enable Screen split calibration

Select the **Enable** checkbox to bring up the setting interface.

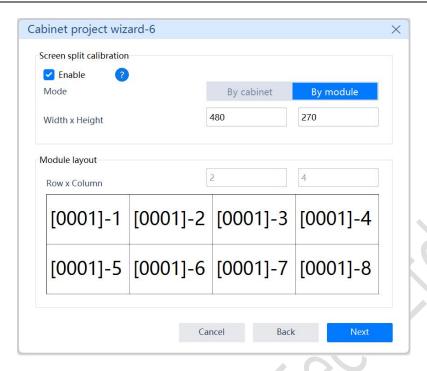


Fig.3-91 Screen split calibration

- Mode: Divides the screen split based on cabinet or module (the size of cabinet and module set in wizard-5). This division will affects the exchange of the calibration position. For example, if you select By cabinet and set cabinet layout as shown in Figure 3-91, all screen splits of cabinet F-1 will be captured in sequence.
- Width×Height: Represents the size of one screen split.
- Cabinet layout: Represents the layout of cabinets within one screen split.
 Only support <Ctrl>+mouse wheel action for scaling and mouse wheel for viewing. Modification is not supported.

Click **Next** to continue. In wizard-7, you can set the naming method for the screen split and the module layout (refer to the wizard for regular single cabinet).

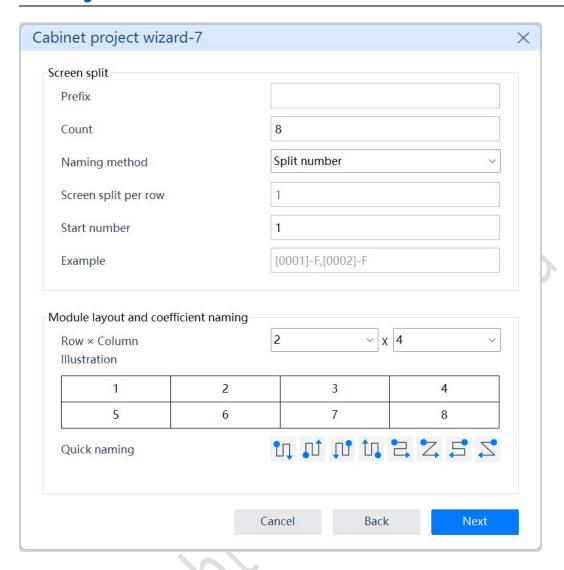


Fig. 3-92 Cabinet project wizard-7

Step 7: Cabinet project wizard-7

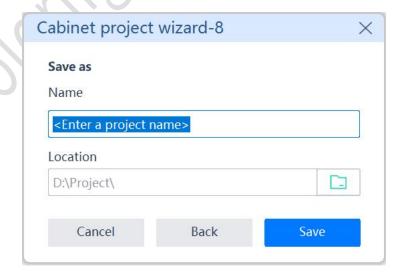


Fig.3-93 Cabinet project wizard-8

Note: You can refer to **Full-screen project wizard-7** for reference.

3.3.2 Project Settings

3.3.2.1 Project settings

The current project path will be displayed. Click the \tag{ \tag{ \tag{ }} to view the path.

Fig.3-94 Project path

3.3.2.2 Sender Mode

In the **Project Settings** tab, *Calibration Pro* will automatically detect senders and receivers once the control PC has been connected, and the senders and receivers that have been detected will be shown in the tab. See Figure 3-95.

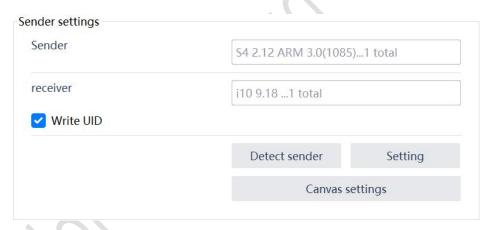


Fig.3-95 Main interface of cabinet project

- **Detect sender**: Click **Detect sender** to detect the currently connected senders and receivers, and then you will be able to view the model, version number, and amount of the senders and receivers detected.
- Setting: Click Setting to bring up a pop-up window where you can enable or disable the option Control LED display via USB/LAN (if sender supports). See Figure 3-96.

Fig.3-96 Control LED display via USB (if sender supports)

Canvas settings: If Control LED display via USB/LAN (if sender supports)
is not enabled, click the Canvas settings to set the starting coordinates
of the calibration image.

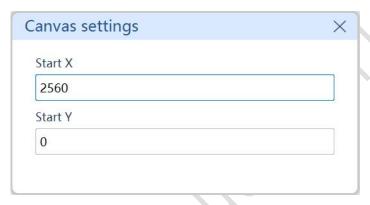


Fig.3-97 Canvas setting

3.3.2.3 Calibration Mode

Click **Switch** to choose a calibration mode. Available options include: **Brightness** and **Chroma**. See Figure 3-98.

Fig.3-98 Available calibration modes

3.3.2.4 Screen Settings

Set the resolution (width × height) of the cabinet and module.

Fig.3-99 Screen settings

3.3.2.5 Seam Correction

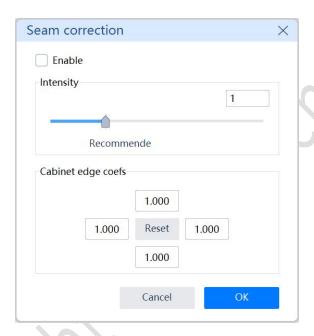


Fig.3-100 Seam correction

- Seam correction: This function is disabled by default. You can enable it as needed. See Figure 3-100.
- Intensity: This field indicates the intensity of brightness adjustment for LEDs at the edges of the cabinet. The default intensity is 1. If the dark (or bright) line turns to be too bright (or too dark) after seam correction, you can lower the intensity appropriately. However, if you find the line still relatively dark (or bright) after correction, you can then increase the intensity appropriately.
- Cabinet edge coefs: You can fine tune the coefficients of the cabinet edge based on the existing calibration coefficients in this field. This operation

can fix the dark and bright lines between cabinets.

3.3.2.6 Cabinet Parameters Settings

Connect to the sample cabinet that has saved receiver parameters and topology. Then, click **Read params** to save the parameters and topology from the sample cabinet. Once the parameters have been successfully read, you can select **Save params before shoot** so that the real-time parameters and topology will be automatically sent to the receivers before shooting photo for cabinet calibration.

Fig.3-101 Cabinet parameters settings

When **High brightness calibration** or **Low brightness calibration**, and the chip is XM or LYD23221, different parameters can be used for high and low brightness calibration. You can configure the parameters in **Gray level settings**.

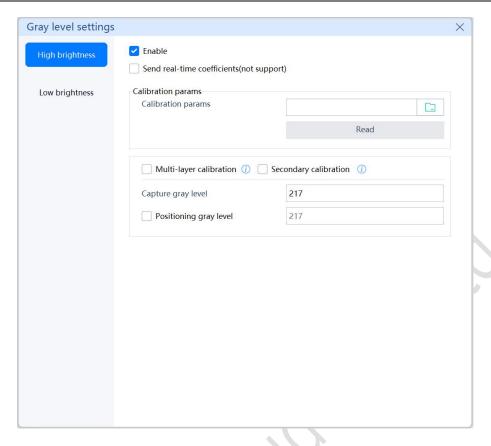


Fig.3-102 High/low brightness for XM chip

3.3.2.7 Partition Settings

You can modify the intervals if necessary.

Supersampling allows for increasing the number of LEDs per capture (which means, you can halve the number of intervals for cabinet of the same size). However, it will also increase the analyzing duration.

A screen split project allows the use of auxiliary intervals to further increase the number of LEDs that can be captured (3840×2160 LEDs per image).

Fig.3-103 Partition settings

3.3.2.8 Gray level

1) High brightness calibration

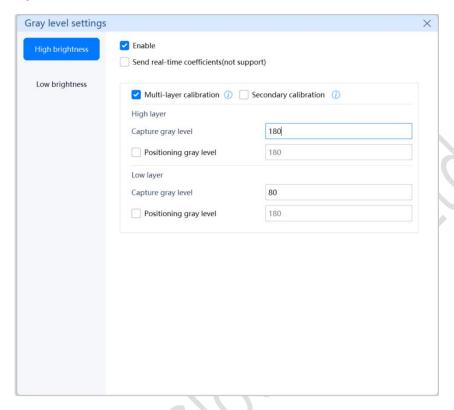


Fig.3-104 High brightness: multi-layer calibration

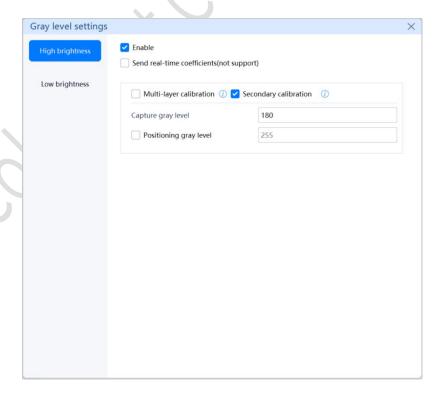


Fig.3-105 High brightness: secondary calibration

- Low brightness truncation: If supported by the receiver, this option will be available in the window together with the setting field for Truncated gamma.
- Positioning gray level: Supports capturing low gray level using the metering data gained in high gray level. Switching the on/off status of this function or modifying this value requires re-metering.

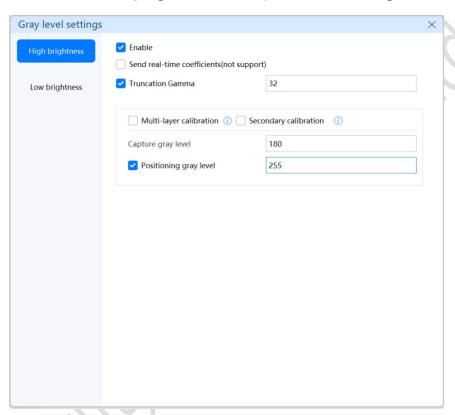


Fig.3-106 Truncation Gamma & Positioning gray level

2) Low brightness calibration

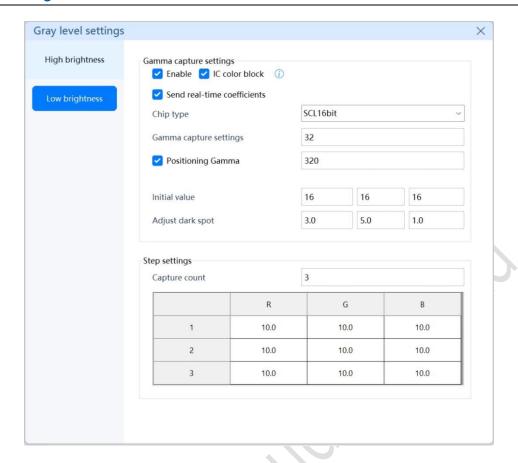


Fig.3-107 Low brightness calibration

- IC color block: You can calibrate the IC color block separately in low brightness when this option is selected.
- Send real-time coefficients: When this option is selected, and if the receiving card supports this feature, the coefficients will be directly sent to the receiving cards for a higher calibration efficiency.
- Chip type: Available options include: XM, SCL6bit, SCL16bit, ICN2260, ICN2270, and LYD23221.
- Gamma capture: Set the Gamma value (64 by default) that is needed to be captured.
- Positioning Gamma: Supports capturing a Gamma value by metering with a bigger Gamma value. Switching the on/off status of this function or modifying this value requires re-metering.
- Initial value: You can set the initial calibration coefficients based on the

required color temperature and initial gray level.

- Capture times: You can set the times for iterative calibration. By default, it is 3 times.
- Step: This should not exceed the set initial value.
- 3) Perform high brightness calibration and low brightness calibration together

Select the **Enable** checkbox respectively in **High brightness calibration** and **Low brightness calibration** tabs. Select **XM** or **LYD23221** as the chip. You can **Read** the calibration params, and different parameters can be used for high and low brightness calibration.

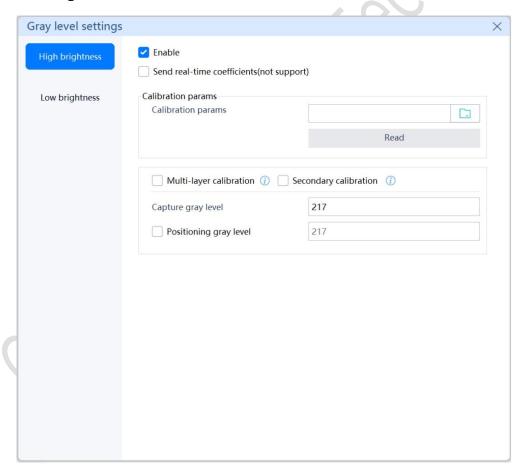


Fig.3-108 High brightness calibration

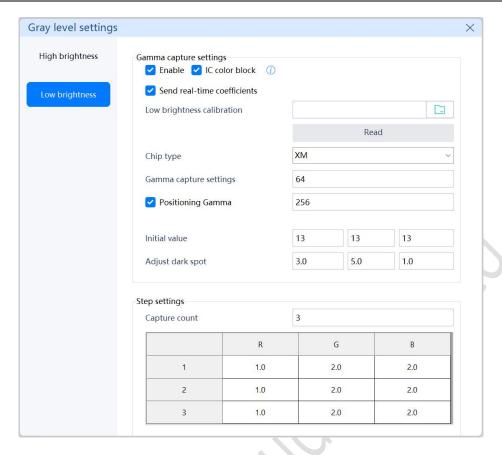


Fig.3-109 Low brightness calibration

3.3.2.9 Effect Settings

Click **Advanced settings** to access the corresponding interface.

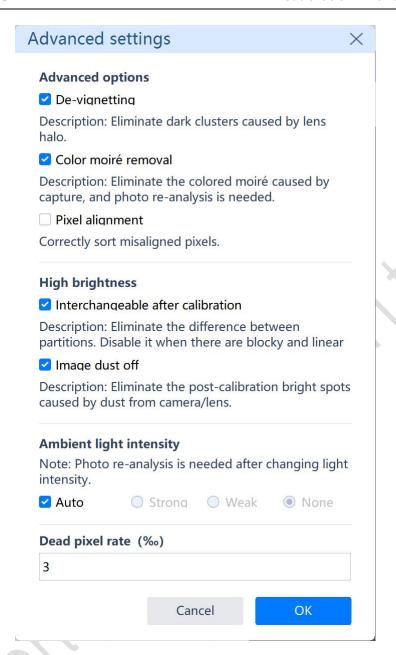


Fig. 3-110 Advanced settings

- **De-vignetting**: Eliminate dark clusters caused by lens halo.
- Color moiré removal: Eliminate the colored moiré caused by capture.
 (Enabled by default.)
- Pixel alignment: Correctly sort misaligned pixels.
- Interchangeable after calibration: Available when COB is not selected in wizard-5. This can be used for eliminating the difference between partitions. This function is enabled by default.

- Uniform brightness: This is for the low-light environment only and is not selected by default. Enabling this item will not do any adjustment to the brightness difference.
- Ambient light intensity: You can select the intensity of the ambient light according to the lighting environment at site.
- Dead pixel rate: This indicates the ratio of the dead pixel to the total pixel.
 The analysis will fail if the actual dead pixel rate exceeds the value set here.

3.3.3 Camera Adjustment

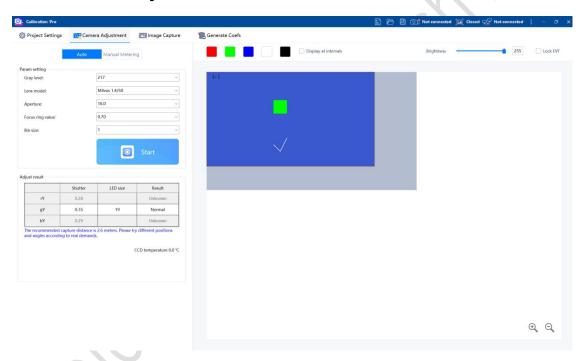


Fig.3-111 Camera Adjustment tab

Note: You can refer to Section 3.2.3 Camera Adjustment for reference.

• In the case when high and low brightness calibration are performed at a time, when the XM or LYD23221 chip is selected for low brightness calibration, you should select Auto at top of the Camera Adjustment tab. Then, Calibration Pro will first send low brightness parameters before sending low brightness initial coefficients. Next, the software will automatically perform metering from low brightness gray level. After the

end of low brightness auto metering, the software will send high brightness parameters and start metering for high gray level. This way, the software completes metering for all gray levels in both high and low brightness calibration modes.

- When the other type of chip is selected for low brightness calibration, you should select Auto at top of the Camera Adjustment tab. Then, Calibration Pro will automatically start metering from low brightness gray level. After the end of low brightness auto metering, the metering for high brightness gray level will be performed. This way, the software completes auto metering for all gray levels in both high and low brightness calibration modes.
- The interface of metering for brightness calibration will be shown in low brightness auto metering mode. For high brightness metering, the exact interface depends on the exact calibration mode selected.
- When the Positioning Gamma is enabled in low brightness, the interface
 of metering in the positioning Gamma will be displayed. When the
 Positioning gray level is enabled in high brightness, the metering will be
 taken in the positioning gray level despite the real gray level.

3.3.4 Effect Debugging

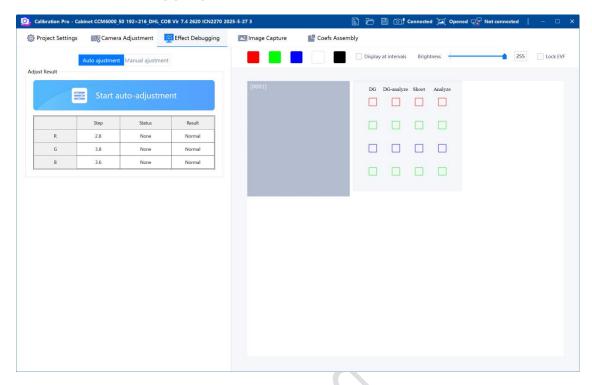


Fig.3-112 Step change in Auto adjustment mode

Note: You can refer to **Section 3.2.4 Effect Debugging** for reference.

3.3.5 Image Capture

The interface of image capture for single cabinet calibration is as shown below.

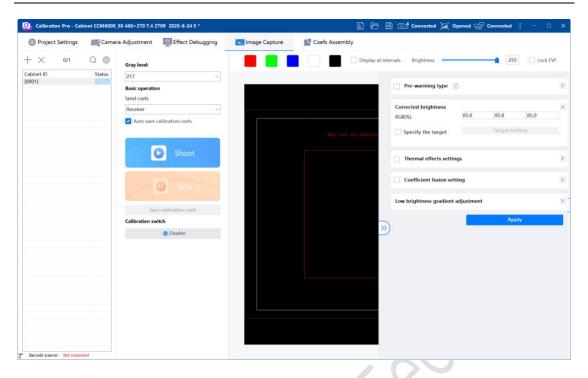


Fig.3-113 Single cabinet image capture in chroma calibration mode

3.3.5.1 Capture List

In Image Capture tab, available options above the cabinet list include:

- (Add cabinet), X (Delete the selected cabinet), 🔯 (Settings), and
- (Search in cabinet list).

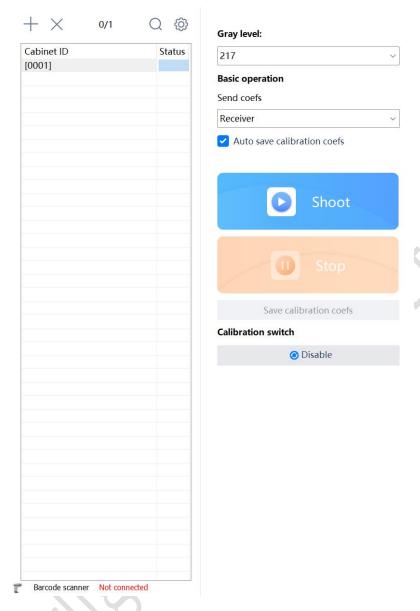


Fig.3-114 Image capture interface

- Ref.: The first cabinet that has completed calibration for all gray levels will be labeled with "Ref." when coefficients of it is being generated, indicating this is the reference cabinet. Re-capturing or deleting the image of this cabinet will affect the calibration effect of the rest cabinets.
- For screen split calibration, all -F screen split must be calibrated before starting the calibration process for the screen.
- Gray level: Displays the selected calibration grayscale, which affects the Save calibration coefs function and the grayscale shown during capture progress.

- Send coefs to: Sets the target location for sending calibration coefficients when Auto Calibration is completed or when Save calibration coefs is enabled. Low brightness coefficients can be sent to chip, module, and chip and module. High brightness coefficients can be sent to receiver, module, and receiver and module.
- Auto save calibration coefs: When selected, the coefficients for the corresponding grayscale will be automatically sent to the specified location after calibration.
- Shoot: Click to start calibrating the currently selected cabinet.
- **Stop:** Click to stop the current calibration process.
- Save calibration coefs: Available when coefficients exist for the selected cabinet and grayscale. Click to send the coefficients to the specified location.
- Calibration switch: The calibration status will be updated after receiver detection. You can select Coefficient source, and Calibration mode, enable Chip low brightness, Simulated by PC, and Multi-layer calibration; and adjust Screen display to check the effect.

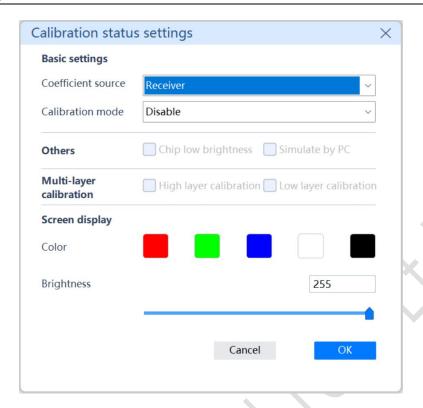


Fig.3-115 Calibration switch

3.3.5.2 Cabinet settings

 Pre-warm before shoot: Control the temperature of the captured gray level before the capture.

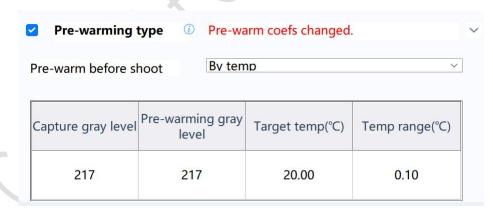


Fig.3-116 Pre-warm before shoot

- ◆ Capture gray level: The value takes effect only during pre-warming.
- Pre-warming type: Available options include By temp(recommended)
 and By time.
- ◆ Pre-warming gray level: Displays white at the specified grayscale

level during pre-warming.

- ◆ Target temperature(°C), Temperature difference(°C): Start capture the set gray level when the temperature detected by the thermometer reaches the value calculated by target temperature ± temperature difference.
- ◆ **Pre-warming time**: Start shoot after this set time.
- High brightness calibration:
 - ◆ Select Coefs blending settings to access the tab and then select Enable. The high brightness coefficients generated thereafter will apply the thermal effects model.

Fig.3-117 Thermal effects model

- ◆ The thermal effects model can be created using the thermal effects tool.
- Coefficient blending model (not for screen split calibration):
 - Blending cabinets: When the number of calibrated cabinets reaches this count, the software will generate a model file and apply this model automatically.

Fig.3-118 Blending cabinets count

◆ Import coefficient

Manual matching:

Fig.3-119 High brightness single-layer calibration

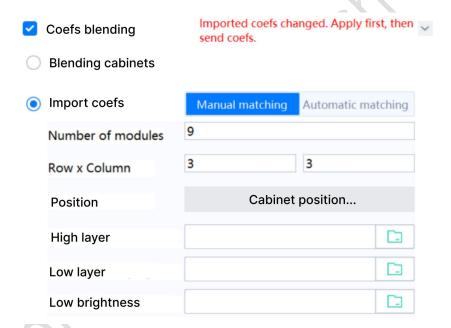


Fig.3-120 Low brightness multi-layer calibration

Click to import model coefficients. Then click **Cabinet position...** to set the cabinet location for high brightness coefficients. Low brightness coefficients does not require position matching.

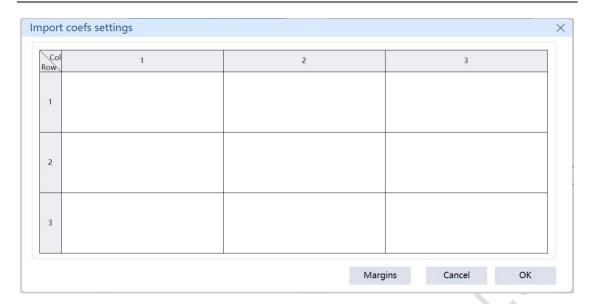


Fig.3-121 Import coefficients settings

Margin settings: The default margin is 0. You can enter the actual margin of the model coefficients.

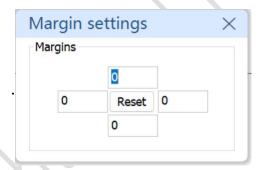


Fig.3-122 Margin settings

Automatic matching:

Once the coefficient model path is loaded, the software automatically maps the coefficients to the corresponding module position.

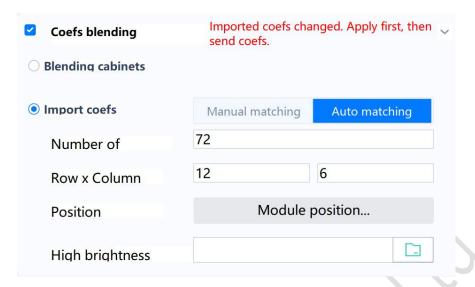


Fig.3-123 Automatic matching

Low brightness gradient adjustment:

The default gradient in the **Adjust low brightness coefs** table is 0. You can set the R, G, and B values for the horizontal and vertical gradients to adjust the color gradient.

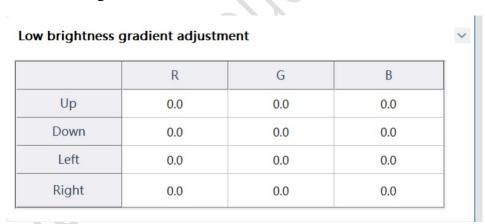


Fig.3-124 Low brightness gradient adjustment

- Model for performing high and low brightness calibration at a time (not for screen split calibration):
- Apply & generate coefs: Click to generate cabinet coefficients of all calibrated cabinets.

3.3.5.3 Cabinet ID Settings

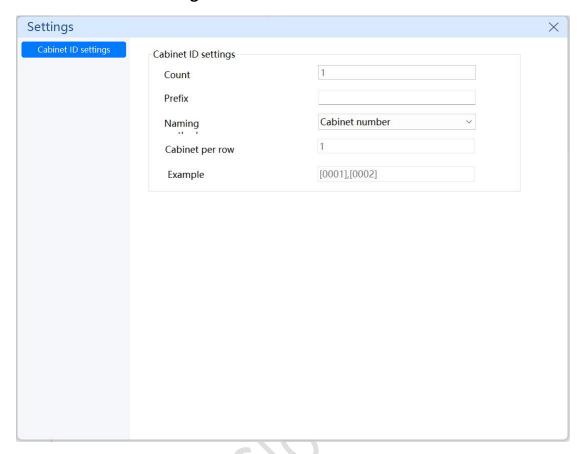


Fig.3-125 Cabinet ID Settings

- Cabinet ID settings: You can refer to Cabinet project wizard-6.
- Double-click the target cabinet ID in the cabinet list to bring up the window where you can modify the ID. Once you have changed the cabinet ID, the calibration data will also change accordingly. After the end of shooting and analyzing, the background color of the cabinet list will change to light blue, and when the coefficients have been successfully sent, a green check mark will appear on the status column.

3.3.5.4 Coefficient Settings

Chroma calibration mode

◆ The brightness after calibration is 85% by default. You can click the input box in the **Brightness after calibration** field to modify the brightness. Click **Chroma settings** to bring up the window where you

can change the original color gamut and the target gamut. You should do the settings once for the first calibrated cabinet. The settings will then be applied to the subsequent cabinets.

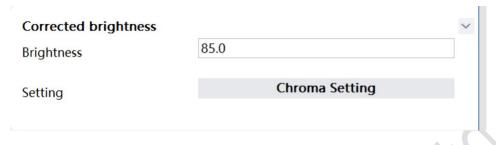


Fig.3-126 Chroma calibration (%)

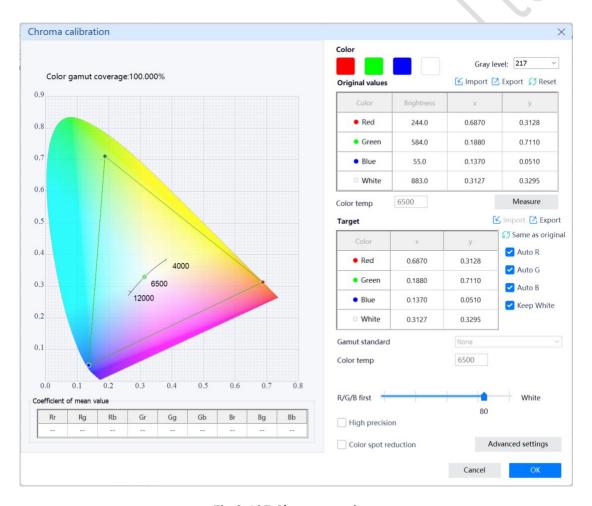


Fig.3-127 Chroma settings

Original values: You can measure the original values by clicking Measure after connecting to the color meter. Besides, you can also import the existing brightness value and coordinates, or click the value to modify. Clicking Export allows for exporting and saving the original values.

- ◆ Target: Calibration Pro will give a target gamut based on the data captured by the camera. If you want to modify the target gamut, you can deselect Auto R/G/B. If you want to apply standard gamut, you can select the standard (available standards include sRGB, AdobeRGB, PAL, NTSC, Rec.601, Rec.709, Rec.2020, and DCI-P3), and then click Import to import the target gamut. Besides, you can also double-click the input boxes to enter the desired values. If you select Same as original, the target gamut will not be adjusted after calibration.
- ◆ R/G/B first or White first: You can move the slider towards R/G/B first or White first to adjust the calibration effect, choosing whether you want the effect for the Red/Green/Blue colors to be greater than that for White, or vice versa.

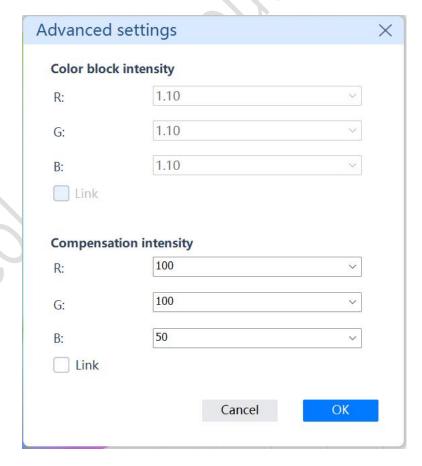


Fig.3-128 Advanced settings for chroma calibration

- ◆ Advanced settings: The Color block intensity is used for setting the range of color block adjustment. If the block is relatively too bright (or too dark) after calibration, you can increase the intensity.
- ◆ Compensation intensity: The default intensities for Red, Green, and Blue are 100, 100, and 50 respectively. You can change the intensity for any one of the 3 colors (Red, Green, and Blue). The higher the intensity, the more color compensation is.'
- Color spot reduction: This can enhance the uniformity of the color compensation (not available for COB brightness calibration).
- ◆ Target cabinet count: When the target cabinet count is 0, each cabinet will calculate its own target color gamut based on its tristimulus values (R, G, B). When the count is 1, the cabinet's RGB values will be followed by the subsequent cabinets for their own gamut. When the count is N (N > 1), a common target gamut will be calculated based on the RGB values of all the N cabinets, and the subsequent cabinets will adopt this gamut to generate coefficients. After you set the target cabinet count, you can click Apply & generate coefs to make the settings take effect. In Multi-layer calibration mode, the gamut settings for each layer will be saved individually. When you finish the calibration, the target color gamut of the lower layer will receive recommendation based on that of the higher layer. After high-precision calibration is enabled, the first N cabinets cannot be modified, and their coefficients will be unavailable. To recalibrate, add new cabinets to the end of the list.
- ◆ Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.
- ◆ High precision: This function is recommended when you find the

calibration effect of color Red/Green/Blue is better than that of color white, or vice versa. The coefficient formats are 9wPCoef and 12wPCoef (4 LEDs virtual).

Brightness calibration

Fig.3-129 Brightness after calibration

◆ The brightness after calibration is 85% by default. You can click the input boxes below R, G and B respectively to modify the brightness. You should do the settings once for the first calibrated cabinet. The settings will then be applied to the subsequent cabinets.

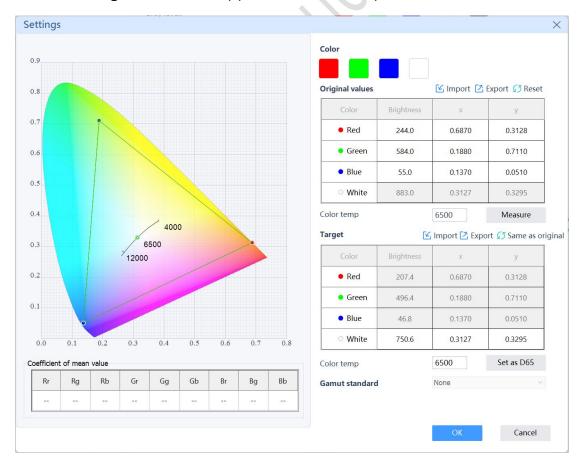


Fig.3-130 Target settings for brightness calibration

- ◆ Color: Click on a colored box to let the screen display the corresponding color.
- Original values: You can measure the original values by clicking Measure after connecting to the color meter. Besides, you can also import the existing brightness value and coordinates, or double-click the value to modify. Calibration Pro will calculate the white point's color temperature based on the original values. You can export the original values by clicking Export. If you don't need to adjust the target temperature, you can simply skip this step.
- ◆ Target: You can adjust the coordinates of the target white point in this sheet. Click Import to import the existing target values. Clicking Export allows for saving the new target values. You can also click Set as D65 to set the color temperature to the standard 6500K. In addition, you can double-click the brightness, x, and y of White in the sheet, and then enter the new values. When Brightness calibration sends chroma coefs is enabled, the target color gamut can be configured.
- ◆ Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.

3.3.5.5 Cabinet Capture Procedure

1) Click **Shoot** to start capturing cabinets from the selected cabinet list.

Chip low brightness calibration: Click **Shoot** first. The software will then send the initial coefficients and finish calibrating the captured gray levels in turn. For screen split calibration, all -F screen splits must be calibrated in advance.

High/low Brightness or high brightness multi-Layer calibration: Automatically completes calibration for all gray levels in the following order:

low brightness, high brightness high-layer, and high brightness low-layer.

- 2) After the end of analyzing image and generating coefficients, the calibration coefficients will automatically be saved to receivers, module, and chip. The **Auto save calibration coefs** is enabled by default. You can unselect the function.
- 3) You will be prompted once the coefficients have been successfully saved. Clicking **OK** can continue calibrating the next cabinet. You can also click the color on top of the interface to check the calibration effect.

Fig.3-131 Display control area

- 4) If needed, load the thermal effect model or import the coefficient blending model. For calibrated coefficients, you must click **Apply&generate coefs** for the new coefficients to take effect.
- 5) Repeat the step 1-3 to calibrate the rest cabinets.

3.3.6 Calibration Log

The calibration log records the abnormal event and the progress information of the calibration. When a cabinet finished calibration, or was added, deleted, or renamed, the event will be recorded into **Progress** sheet of the log. The operations that will affect the calibration progress and effects, such as switching calibration mode, modifying post-calibration brightness, metering and camera coefficient modification, low brightness capture Gamma, step size, and dark point adjustment, will be recorded into the **Exception** sheet.

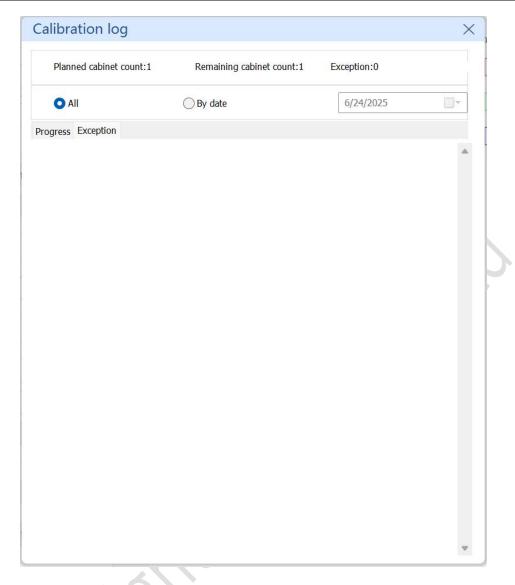


Fig.3-132 Calibration log

- Planned cabinet count: This number conforms to the cabinet count in the cabinet list.
- Remaining cabinet count = Planned cabinet count calibrated cabinet count
- Exception: This field shows the number of abnormal cabinets during calibration.
- All: This field shows the progress and exception records of the project.
- By date: Click the downward arrow to select a date from the drop-down calendar so as to check the calibration record generated on the selected

date.

3.3.7 Coefs Assembly

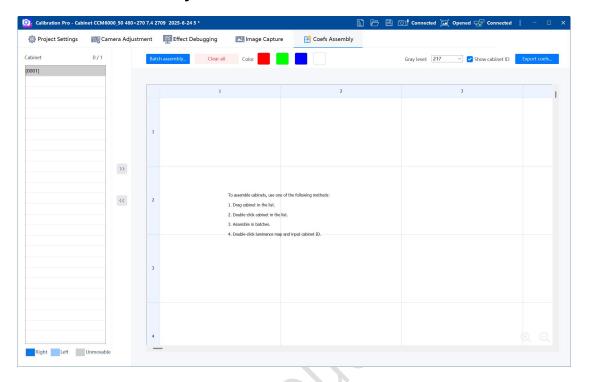


Fig.3-133 Coefficient assembly

You can access the **Coefs Assembly** tab after the end of (screen split) cabinet calibration. In cabinet list on the left side of the tab, the cabinets that have finished calibration will be colored dark blue. You can assemble the luminance map on the right side of the tab.

Select a cabinet with dark blue background (screen split) and then click the rightward double arrows button in the middle of the interface to add the luminance map of the selected cabinet to the assembly area on the right side. The added map can move freely on the assembly area. If you want to remove a map from the area, you can simply select the luminance map and then click the leftward double arrows button in the middle of the interface. A light blue icon indicates that the cabinet (screen split) has been assembled. A cabinet with gray background indicates it has not finished calibration and its luminance map cannot be added to the assembly area.

When there are multiple capture gray levels for the cabinet (performing high and low brightness calibration, and multi-layer calibration), you can switch the current gray level to view corresponding luminance map in the assembly area.

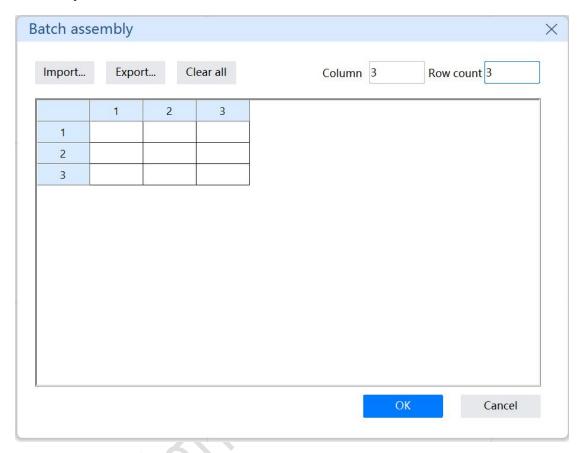


Fig.3-134 Batch assembly

Batch assembly: Enter target cabinets' names into an Excel table first. Then, in the Batch assembly window, import the Excel table. The cabinets (screen splits) luminance maps will then automatically be assembled according to the naming method of the cabinets. Next, click Export coefs to export the assembled cabinet (screen split) coefficients based on the cabinets' layout in the assembly area. The coefficients will be exported either as full-screen coefficients or by partitions or by modules.

For the luminance maps of the assembled cabinets, you can right-click on the map to add an **Image dust off** mark frame. Then, you can set the mark frame to apply it to the current cabinets, the subsequent cabinets, or all cabinets. Next, click **Apply** to make the settings take effect.

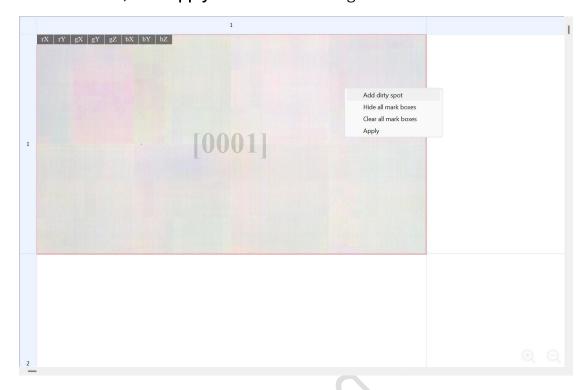


Fig.3-135 Add dirty spot

Fig.3-136 Delete, apply, and hide

Chapter4 Calibration with Canon Camera

4.1 Canon Camera Assembly

4.1.1 Tripod Setup

Unfold the tripod and adjust its height, making it face the screen center, or at a height close to the user's eye level.

Fig.4-1 Open the tripod

4.1.2 Mount Tripod Head

Align the screw hole at the bottom of the tripod head with the mounting screw of the tripod, and then screw the tripod head clockwise.

Fig.4-2 Mount the tripod head

4.1.3 Attach Lens

1) Rotate the lens cap and the body cap to remove them.

2) Align the red mount index on the lens with the red mount index on the camera and turn the lens as shown by the arrow until it clicks in place. See Figure 4-3.

Fig.4-3 Attach lens

3) Switch the focus mode to <MF> and then switch off the stabilizer of the lens (marked as OS on Sigma lens and IS on Canon lens). See Figure 4-4.

Fig.4-4 Adjust the focus mode

4.1.4 Mount Camera

- 1) Flip the quick-release lever of the tripod head to the direction as depicted in Figure 4-5.
- 2) Adjust the lens direction to make it align with that of the tripod head.
- 3) Mount the camera onto the plate of the tripod, and the lever will be automatically released to fix the camera. See Figure 4-6.

Fig.4-5 Mount Camera

Fig.4-6 Mounting complete

4.2 Full-Screen Calibration

4.2.1 New Full-Screen Calibration

Step 1: Full-screen project wizard-1

In the start screen, click **New full-screen calibration** to access the **Full-screen project wizard-1**. See Figure 4-7.

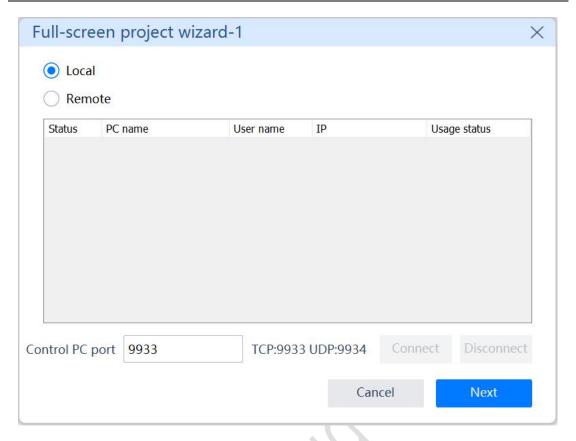


Fig.4-7 Select Local

- 1) For calibration with a single control PC, select **Local** to connect to the control PC.
- 2) For calibration with 2 PCs, select **Remote** and then select a PC from the sheet below as the control PC (available PCs in the currently used LAN will automatically be shown in the sheet). Once you have selected the target PC, click **Connect**.

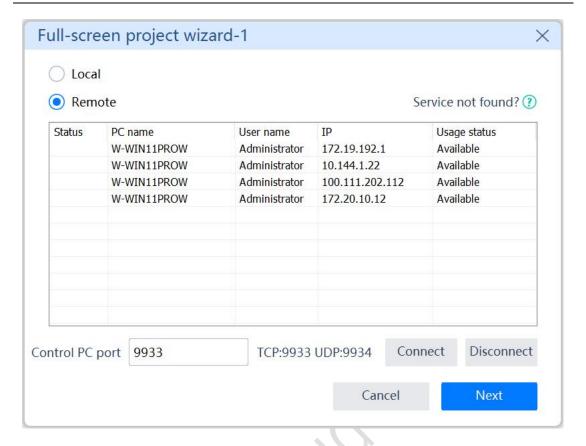


Fig.4-8 Select Remote

Notes:

- 1 It is recommended that you select **Remote** when the sender is placed far from the LED screen, and the control PC cannot physically connect to the sender via a cable.
- ② For calibration with 2 PCs, the PCs should share the same LAN (connected via WIFI or network cable), and the firewalls of them should be turned off. The 2 PCs should install *Calibration Pro* of the same version.
- ③ The PC for display capture will automatically launch *CaliPro Server* and should be connected to the control PC.
- 4 The **Control PC port** is 9933 by default. If the default port has been occupied by other devices, you will need to set a port number for both the control PC and the PC for display capture. To modify the port number, right-click the software interface or minimize the interface in the control PC, and then access the network setup window to enter a new port number. See Figure 4-9.

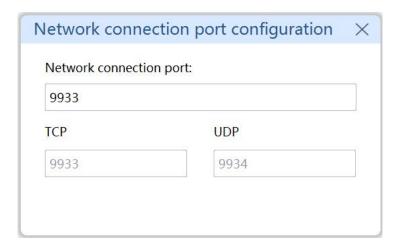


Fig.4-9 Network connection port configuration

⑤ If the ports match and the control PC can ping the PC for display capture, but the target device is not detected, click the ③ icon and manually enter the IP address. See Figure 4-10.

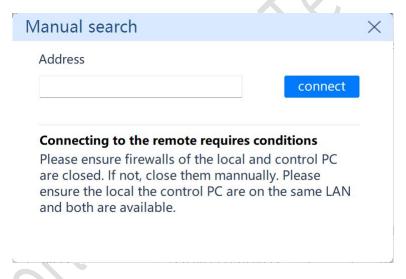


Fig.4-10 Manual search

After the control PC finished network connection, click **Next** to bring up the **Full-screen project wizard-2**.

Step 2: Full-screen project wizard-2

In the **Full-screen project wizard-2**, you will be able to view information about the amount of the connected sender and receiver, their model, and their program version. See Figure 4-11.

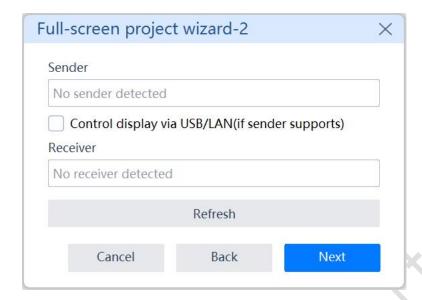


Fig.4-11 Full-screen project wizard-2

- If the sender supports display control via USB or LAN, you can select the Control LED display via USB or LAN (if sender supports) checkbox. This will allows for pixel-to-pixel calibration image display without video signal.
- If the sender does not support USB control, you can perform calibration using video signal. Note that you should perform calibration with an extended screen in this case (see Project settings-Canvas settings in the following descriptions for reference).
- If the sender supports controlling screen group, you will be able to select the desired group for control in this window.

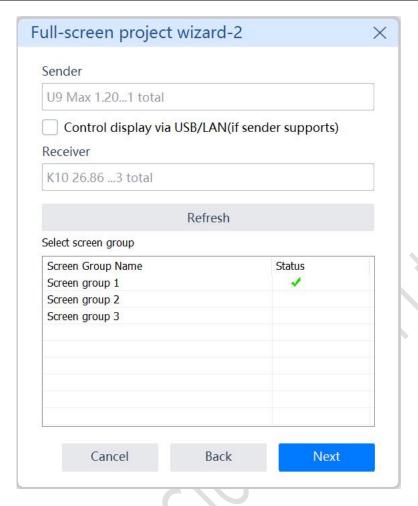


Fig.4-12 Full-screen project wizard-2: screen group

Then, you can click **Next** to move on to the **Full-screen project wizard-3**.

Step 3: Full-screen project wizard-3

Select Canon in this step. See Figure 4-13.

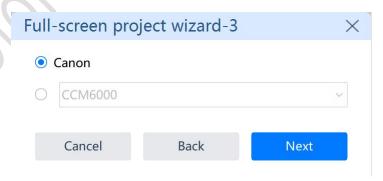


Fig.4-13 Full-screen project wizard-3

Step 4: Full-screen project wizard-4

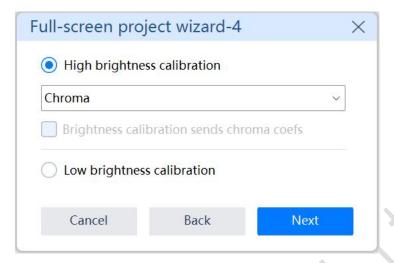


Fig.4-14 Full-screen project wizard-4

You can select the calibration mode in this step. See Figure 4-14. Available modes include: Brightness, Chroma, Seam correction (only), and Chip low brightness (if supported by receiver).

After the selection, you can click **Next** to move on to the **Full-screen project** wizard-5.

Step 5: Full-screen project wizard-5

You can finish setting modules, cabinets, and the screen in this step.

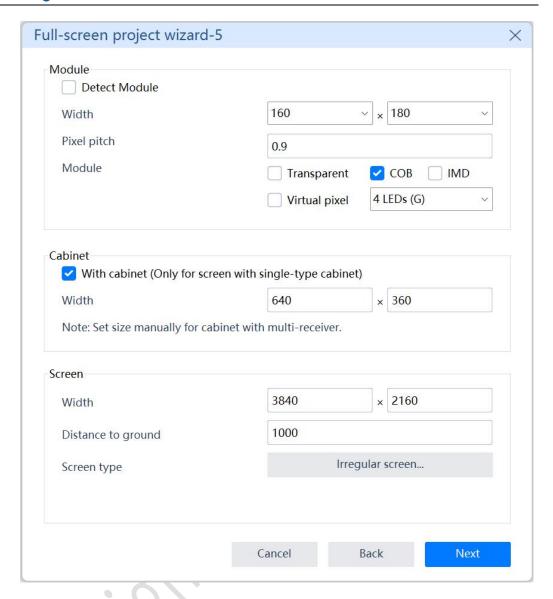


Fig.4-15 Full-screen project wizard-5

- With Cabinet (Only for screen with single-type cabinet): This checkbox is selected by default. Select this checkbox when the screen is composed of cabinets of only one type.
- **Transparent:** This checkbox should be selected when the horizontal pixel pitch is different from the vertical one.
- **Different color**: Select this checkbox when the calibrated screen has modules with color difference.
- IMD: Select this checkbox when IMD module is used for the currently calibrated screen.

- Pixel Pitch: Calibration Pro will recommend a proper pixel pitch once the receiver is detected. Normally it is 0 by default, and you can enter a new pitch according to the real situation.
- Irregular screen settings

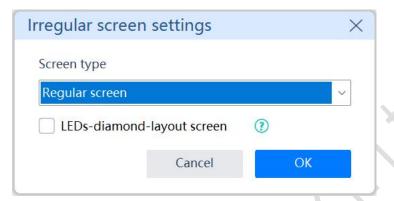


Fig.4-16 Irregular screen settings

◆ Curved screen: Select this checkbox when the screen is a curved one assembled by modules with the same LEDs in row and in column. You should also enter a value in the One-fold Width input box for a curved screen according to the real situation. See Figure 4-17.

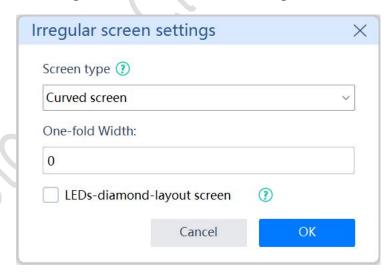


Fig.4-17 Curved screen settings

◆ Polygonal screen: Select this checkbox when the screen is an irregular one assembled by rectangular modules with the same LEDs in row and in column.

◆ LED dome screen: Select this checkbox when the screen is an irregular one assembled by modules with the same LEDs in row or in column. You will need to set the module layout for this type of screen according to the real situation.

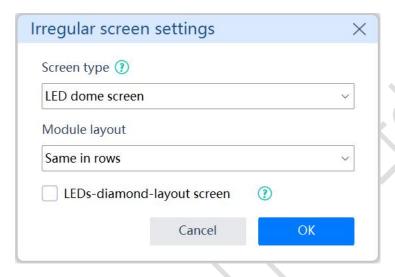


Fig.4-18 LED dome screen settings

◆ Sector-shaped screen: Select this checkbox when the screen is sector-shaped and is formed by identical triangular modules. You will need to select the corresponding module layout and enter a value in the Sector Width input box according to the real situation.

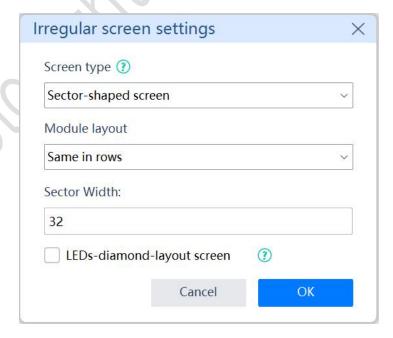


Fig.4-19 Sector-shaped screen settings

• **Distance to ground:** This field indicates the real distance between the bottom of the screen and the ground (unit: mm).

Click **Next** when you finish this step.

Step 6: Full-screen project wizard-6

You can set the margins of the screen in this step. See Figure 4-20.

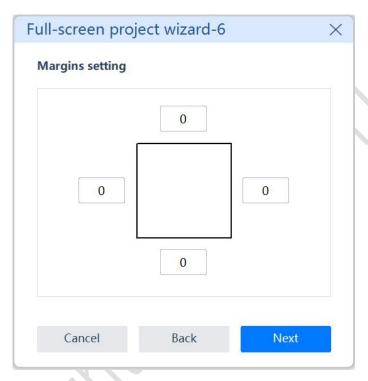


Fig.4-20 Full-screen project wizard-6

In this step, the screen will display a white frame. In this window, you can enter the number of LEDs that will not be lit during calibration respectively in the four input boxes around the frame, according to the installation of the screen at site.

• When *Calibration Pro* has detected more than 1 sender, you will need to set the sender layout before continuing the wizard-6. See Figure 4-21.

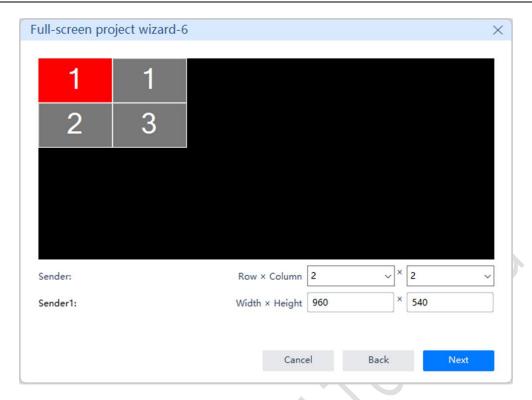


Fig 4-21 Sender layout settings

In this step, you should enter the rows and columns of the senders according to their real layout. Click a sender to set its size and position in the load area. You can also exchange the control area and position of two senders by dragging them in this interface. Once you have finished the sender settings, you can click **Next** to move on to the setup of **Margins** and do as described above. See Figure 4-21.

Once you have finished setting the margins, click **Next** to continue.

Step 7: Full-screen project wizard-7

You can name the calibration project and select a path for saving it in this step. See Figure 4-22.

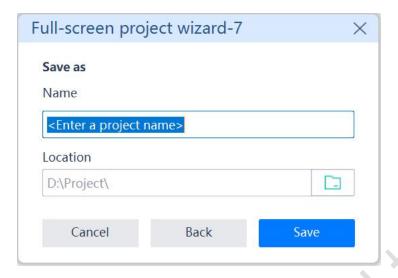


Fig.4-22 Full-screen project wizard-7

Name: Enter the name of the calibration project in this field.

Location: Select a path for saving the project file and data in this field.

Once you have finished this step, you can click **Save** to apply all the settings finished in the above 7 steps, and you will be prompted the recommended shooting distance (see Figure 4-23). Next, click **OK** to finish the full-screen calibration project setup and access the main interface for this project.

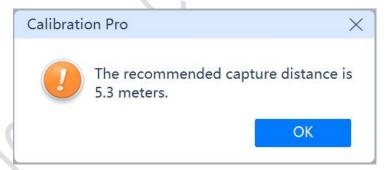


Fig.4-23 The reminding message for the recommended shooting distance

4.2.2 Project Settings

The main interface of the full-screen project is as shown in Figure 4-24. You should first set the basic parameters for the project in the **Project Settings** tab.

Colorlight

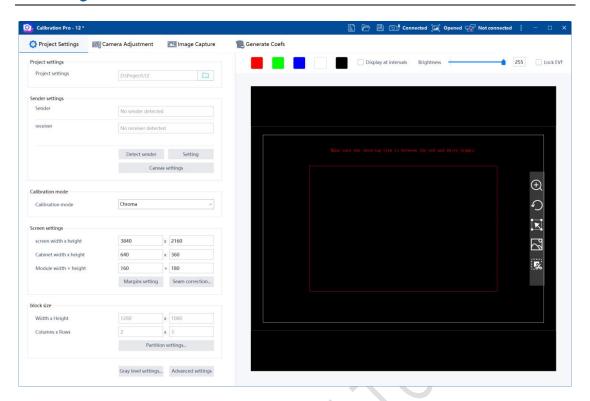


Fig.4-24 Main interface of full-screen project

4.2.2.1 Project Settings

The current project path will be displayed. Click the | Land to view the path.

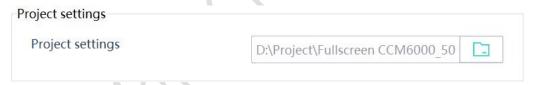


Fig.4-25 Project path

4.2.2.2 Sender Settings

In the **Project Settings** tab, *Calibration Pro* will automatically detect senders and receivers once the control PC has been connected, and the senders and receivers that have been detected will be shown in the tab. See Figure 4-26.

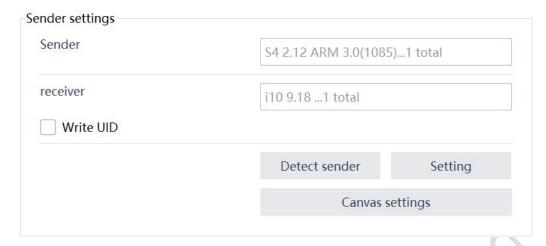


Fig.4-26 Basic information in sender mode

 Detect sender: Click Detect sender to detect the currently connected senders and receivers, and then you will be able to view information about the model, version number, and amount of the detected senders and receivers.

Setting:

1) Click **Setting** to bring up a pop-up window for setting the sender control mode. If there is only 1 or no sender detected, you can only enable or disable the option **Control LED display via USB/LAN (if sender supports)**. See Figure 4-27.

Fig.4-27 Control LED display via USB (if sender supports)

2) If the amount of the senders that have been detected exceeds 1 (i.e., there are multiple senders cascaded for calibration), you will be able to set the layout of the senders in sender setup wizards.

> Sender setup wizard-1

In Sender setup wizard-1, you can divide the screen into several partitions according to the load capacity of the sender. There are 2

ways available, as shown in Figure 4-28.

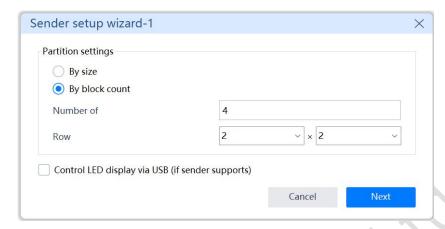


Fig.4-28 Sender setup wizard-1

- 1) By size: Divide the screen based on the size of each partition.
- ② **By block count**: Divide the screen according to the rows, columns, and number of partitions you set.

Once you have set up the principle for screen partitions based on the real control area of the senders, you can click **Next** to continue.

> Sender setup wizard-2

In this step, you can set up the partitions. See Figure 4-29.

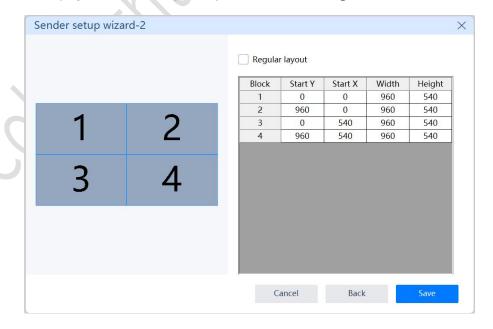


Fig.4-29 Sender setup wizard-2

- ◆ Regular layout: If you select this checkbox, you can only set the size of the sender-control area in a way that makes the partitions align in rows and columns. You can modify the size of each sender-control area individually after deselecting this checkbox.
- ◆ Reset: Click to reset the positions and size of the sender-control area.

Click **Save** once you have finished the setting process.

Canvas settings: If Control LED display via USB/LAN (if sender supports)
is not enabled, click the Canvas settings to set the starting coordinates
of the calibration image.

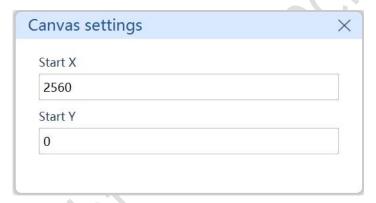


Fig.4-30 Canvas settings

4.2.2.3 Calibration Mode

Click **Switch** to choose a calibration mode. Available options include: **Brightness, Chroma,** and **Seam correction (only)**. See Figure 4-31.

Fig.4-31 Available calibration modes

4.2.2.4 Screen Settings

 Screen settings: Set the resolution (width × height) of the screen, cabinet and module.

Fig.4-32 Screen settings

• Margin settings: See Full-screen project wizard-6.

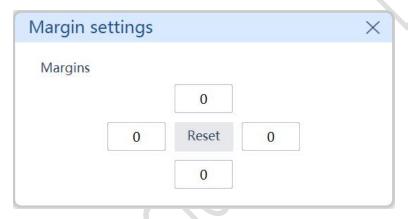


Fig.4-33 Margin settings

Seam Correction:

A dark line will appear when the seam between modules or cabinets is too wide. Similarly, a bright line will appear when the width of the seam is less than the pixel pitch. Such dark or bright line issue can be fixed by adjusting the brightness of the LEDs on the target seam.

1)Seam correction: Click Seam correction in the Project Settings tab, and then select the Enable checkbox in the pop-up window to enable the seam correction function. See Figure 4-34.

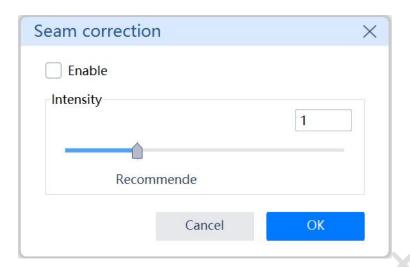


Fig.4-34 Seam correction settings

2)Intensity: If you find the correction effect not as expected, you can move the slider below to change the adjusting intensity for seam correction. The default intensity is 1. If the original dark (or bright) line turns to be too bright (or too dark) after seam correction, you can lower the intensity appropriately. However, if you find the line still relatively dark (or bright) after the correction, you can increase the intensity appropriately.

Note: If you have selected **Seam correction (only)** before, you cannot perform the brightness/chroma calibration, and the seam correction function will be enabled by default. See Figure 4-35.

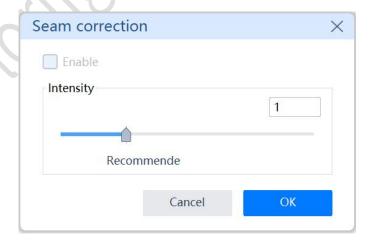


Fig.4-35 Seam correction (only) settings

4.2.2.5 Partition Size

• Regular screen calibration

Calibration Pro will recommend a proper partition size according to the size of the screen. You can click **Partition settings** to change the partition size if necessary.

Fig.4-36 Partition size settings

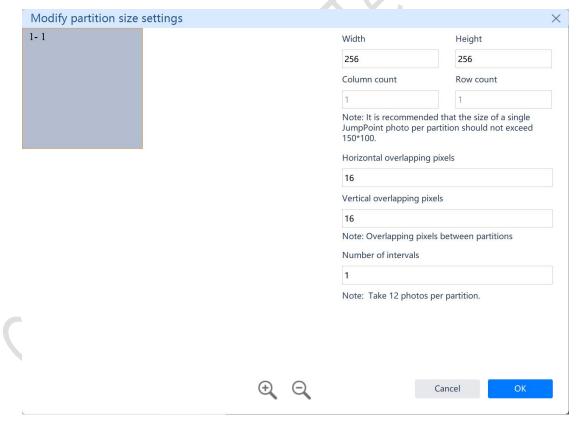


Fig.4-37 Partition size settings

Note:

1) For a regular screen by default, 16 LEDs will overlap between partitions, and for a COB screen, the software will automatically recommend an

appropriate number of overlapping pixels based on the module size. The overlapping pixels apply to the right and bottom sides of each partition and only takes effect when there is more than one column or row. Overlapping pixels are not applied on the rightmost column (row direction) and bottom-most row (column direction).

- 2) Once you have finished modifying the partition size, the number of intervals will automatically be calculated. You can find the number of photos that will be captured in each partition. See Figure 4-38.
- 3) **Supersampling** can be enabled to reduce the impact of display coupling on calibration. The **Auxiliary intervals** is 1 by default and is modifiable.
- LEDs-diamond-layout screen

If **LEDs-diamond-layout screen** has been selected before, an additional option **Photo capture settings** will be available in the **Modify partition size settings** window. You can select photos captured at intervals for metering based on your need.

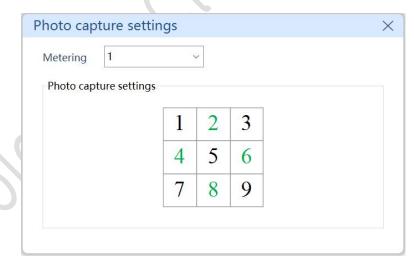


Fig.4-38 Photo capture settings for screen with diamond-layout LEDs

You can select a partition from the **Partition preview** window or from the right side of the **Project Settings** tab. The selected partition will then be displayed with a white frame on the LED screen.

LED dome screen and sector-shaped screen calibration

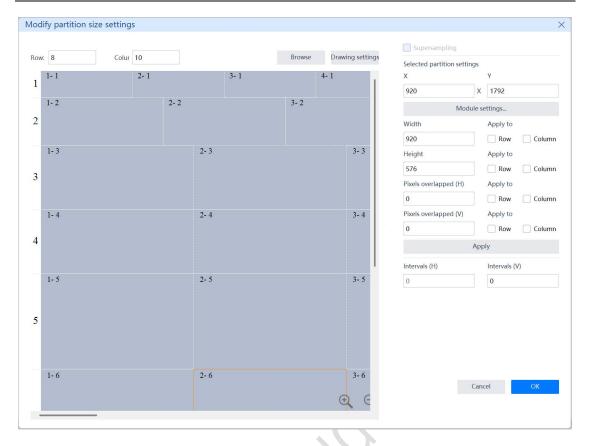


Fig.4-39 Modify partition size of LED dome screen and sector-shaped screen

- 1) In the window, you can see the recommended partition size based on the module size. You can modify the size and apply the new partitions to corresponding rows or columns. You can also modify the partition size by changing the row count and column count.
- 2) By default, there is no pixel overlapping both horizontally and vertically. You can modify the number according to your need and then apply the change to corresponding rows or columns.
- 3) The default horizontal and vertical intervals are recommended results from *Calibration Pro*, and you can modify them manually according to your need.
- 4) If you have selected **Same in rows** (i.e., the modules are the same horizontally) before, you should click **Drawing settings** and then enter the receiver row count in corresponding field. Next you can import the actual pixel drawing table.

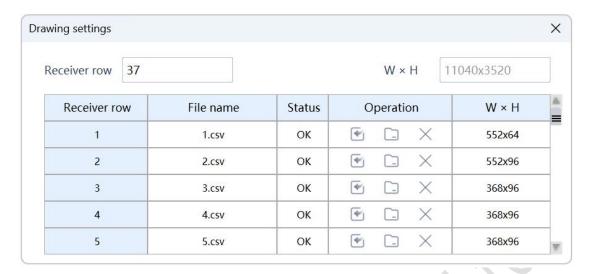


Fig.4-40 Drawing settings when modules are the same horizontally

5) If you have selected **Same in columns** (i.e., the modules are the same vertically) before, you should click **Drawing settings** and then enter the receiver column count in corresponding field. Next, you can import the actual pixel drawing table.

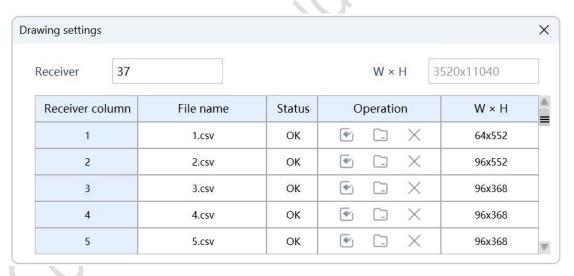


Fig.4-41 Drawing settings when modules are the same vertically

6) If you have selected **Same in rows** before, you can click **Module settings** and then import the actual LEDs count in each row.

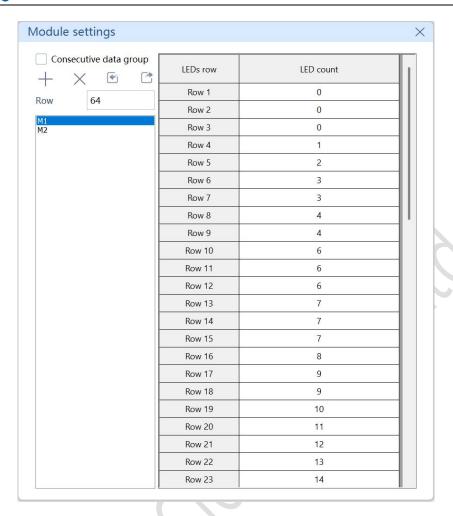


Fig.4-42 Module settings when modules are the same horizontally

7) If you have selected **Same in columns** before, you can click **Module settings** and then import the actual LEDs count in each column.

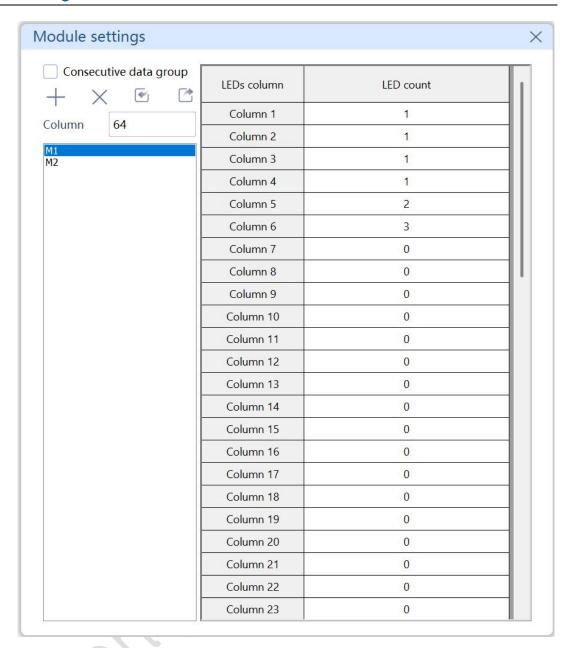


Fig.4-43 Module settings when modules are the same vertically

4.2.2.6 Effects Settings

You can click **Advanced settings** to access the corresponding interface. See Figure 4-44.

- De-vignetting: Eliminate dark clusters caused by lens halo. (Enabled by default.)
- Color moiré removal: Eliminate the colored moiré caused by capture.
- Pixel alignment: Correctly sort misaligned pixels

- Interchangeable after calibration: This option is selected by default to enable eliminating differences between the partitions after calibration.
- Image dust off: This option is selected by default to enable eliminating the post-calibration bright spots caused by dust from camera/lens.
- Ambient light intensity: The Canon camera can work for calibration when ambient light exists, and the camera can adjust itself automatically to match the light. You can also select Strong, Weak, or None according to the real situation of the ambient light at site.
- Dead pixel rate: This field shows the ratio of dead pixels to the entire screen. You can adjust the ratio based on the actual situation. Note that if the actual dead pixel rate exceeds the rate you have set, the analysis will fail.

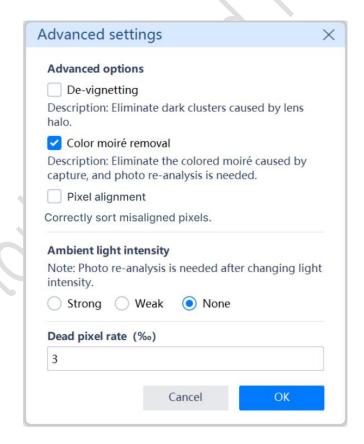


Fig.4-44 Effects settings for the Canon camera

If you have selected **COB** before, the available option will be **Image dust off** as shown in Figure 4-45.

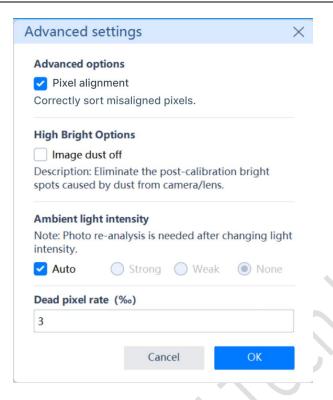


Fig.4-45 Effects settings for Canon (COB module)

4.2.3 Camera Adjustment

1) Adjust the position of the camera and the tripod head to make the selected area of the LED screen be captured on the white frame of the preview area for framing.

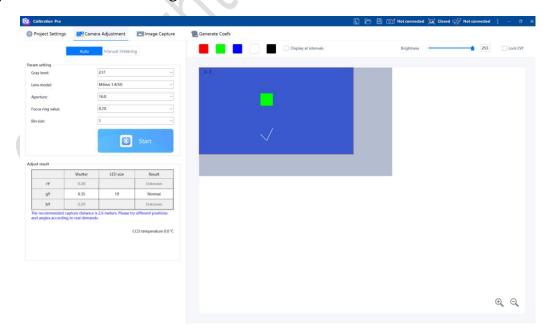


Fig.4-46 Camera framing

Note: The selected area should generally align with the frame; The selected area should generally fill with the frame (exceeding the frame a little bit is acceptable); The selected area should not exceed the preview area; Adjust the lens to get a clear focus first, and then fine tune the lens to make the framing a little bit fuzzy.

- 2) Auto metering: Select **Auto** and then click **Start**. *Calibration Pro* will automatically adjust the shutter time for normal metering, and you can check the size of the LEDs when metering can be performed normally.
- ① If the captured size of LEDs is less than 150, you should adjust the lens focus to make the image a little bit fuzzy, and then click **Start** again.
- ② If the captured size of LEDs is over 270, you should adjust the lens focus to make the image look sharper, and then click **Start** agian.
- ③ The normal metering result for the captured size of LEDs should be within the range of 150-270. Once you have obtained this result, you can finish the metering.



Fig.4-47 Auto metering complete

- 3) Manual metering: Select Manual metering and then click Measure.
- ① If the captured size of LEDs is less than 150, you should adjust the lens focus to make the image a little bit fuzzy.
- ② If the captured size of LEDs is over 270, you should adjust the lens focus to make the image look sharper.
- ③ If the measurement result is too dark, you should increase the shutter time or the brightness.
- ④ If the measurement result is too bright, you should decrease the shutter time or the brightness.
- ⑤ You should click **Measure** every time when you have adjusted the shutter time, brightness, or lens focus until the measurement result is normal and the captured size of the LEDs is between 150-270.

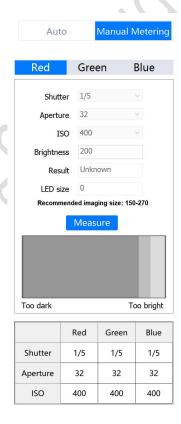


Fig.4-48 Manual metering

Note: When the captured size of the LEDs is far from the range (150-270),

you will be prompted "WARNING: Too few pixels marked." or "WARNING: Too many pixels marked." In this case, you should check whether there are too many dead pixels or whether the screen have been blocked.

4.2.4 Image Capture

Click **Image Capture** to access corresponding tab. In the tab, select a partition and then adjust the position of the tripod head to make the camera face the selected partition. Then, click **Shoot**. *Calibration Pro* will automatically control the camera to capture image of the selected partition and conduct analysis. Once the procedure for the partition has finished, the software will automatically repeat the same process to the next partition until all partitions are captured and analyzed. During this period, you can put the mouse on the partition that is undergoing the procedure to view the progress of the task. See Figure 4-49.

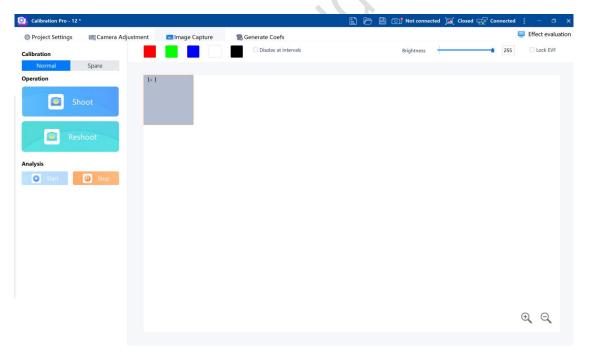


Fig.4-49 Image capture

• Once a color (Red, Green, or Blue) of a partition has been captured, it will be shown on the corresponding partition and the background color of that partition will change to light blue (see Figure 4-50).

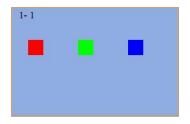


Fig.4-50 Shooting complete

 Once the analysis of the components is completed, a white check mark will appear below the corresponding color. When a partition has been captured and analyzed, its background color will change to dark blue (see Figure 4-51).

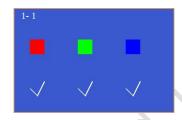


Fig.4-51 Shooting and analysis complete

4.2.5 Generate Coefs

4.2.5.1 Brightness After Calibration

Once the shooting and analyzing have been completed, you can access the interface for generating coefficients. Next, you can click **Generate luminance** map to view the brightness loss automatically calculated. You can also modify the post-calibration brightness to change the brightness loss.

Fig.4-52 Brightness calibration mode

Fig.4-53 Chroma calibration mode

4.2.5.2 Settings

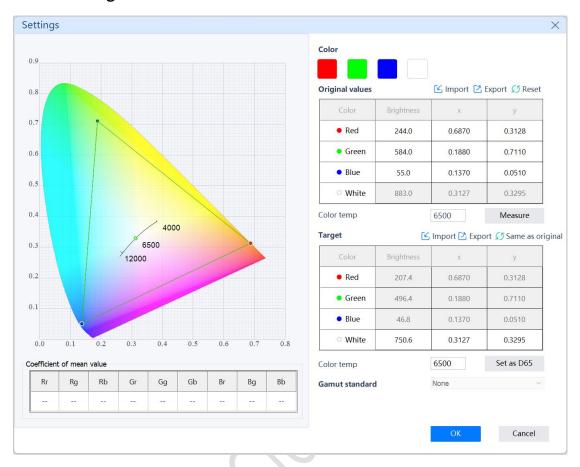


Fig.4-54 Target color temperature settings in brightness calibration mode

- Color: Click on a colored box to let the screen display the corresponding color.
- Original values: You can measure the original values by clicking Measure after connecting to the color meter. Besides, you can also import the existing brightness value and coordinates, or double-click the value to modify. Calibration Pro will calculate the white point's color temperature based on the original values. You can export the original values by clicking Export. If you don't need to adjust the target temperature, you can simply skip this step.
- Target: You can adjust the coordinates of the target white point in this sheet. Click Import to import the existing target values. Clicking Export allows for saving the new target values. You can also click Set as D65 to

set the color temperature to the standard 6500K. In addition, you can double-click the brightness, x, and y of White in the sheet, and then enter the new values.

 Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.

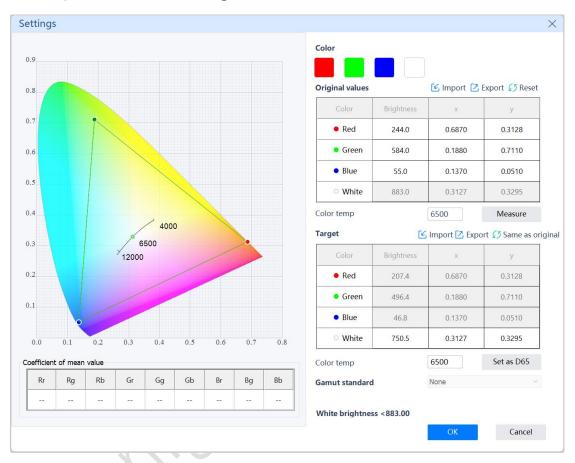


Fig.4-55 Color gamut settings interface

- Color: Click on a colored box to let the screen display the corresponding color.
- Original values: You can measure the original values by clicking Measure
 after connecting to the color meter. Besides, you can also import the
 original screen brightness and color gamut, or double-click the input
 boxes to modify the value. Clicking Export allows for exporting and
 saving the original values. If you don't need to modify the values, you can
 simply skip this step.

- Target: You can adjust the target color gamut and the color temperature coordinates in this sheet. By default, the values in this sheet are calculated automatically. You can unselect Auto and double-click the input boxes to enter the new values if necessary. Besides, you can also apply the standard color gamut settings (*Calibration Pro* provides parameters of sRGB, AdobeRGB, PAL, NTSC, Rec.601, Rec.709, Rec.2020, and DCI-P3). If you select Same as original, there will not be color gamut loss.
- Color spot reduction: This option is available during chroma calibration for regular screen. You can select this option to optimize the color spot issue after the calibration.
- Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.

4.2.5.3 Sending and Exporting Coefficients

 You can click Generate luminance map and then control the screen color and brightness on the control bar. In addition, you can also select Zoom in, Zoom out, or 1:1 to control the display of the luminance map. If you want to view the distribution of the shooting area on the screen, you can select the Show partition line checkbox.

Fig.4-56 Display control bar

- You can obtain coefficients by clicking on Generate coefs.
- Once the coefficients have been successfully generated, you can click
 Save coefs to save the coefficients to all areas or a specified area.
- You can then switch on/off the calibration.
- You can click Export coefs and then select Export all, Export coefs by sender, or Export by partition based on your need to save the calibration

coefficients.

 Spare calibration: Select Calibration object > Switch > Spare, and then click OK. You will then access the interface for spare calibration.
 Next, you can select the partition that you want to replace with a spare.
 And then you can click Shoot to start the spare calibration.

4.2.6 Effect Evaluation

Once a partition has finished calibration, the calibration parameters can be saved to receivers. With the calibration function enabled, you can then capture the calibrated partition again to evaluate the calibration effect. You can access the evaluation window by clicking on the icon at the right end of the toolbar.



Fig.4-57 Effect evaluation

- 1) The **Screen width** / **Screen height** represents the width/height of the full-screen of the current project.
- 2) The \mathbf{x} and \mathbf{y} indicate the initial coordinates of the selected partition. Modifying the coordinates can change the evaluated partition. Also, you can

add partitions for evaluation by clicking on the + icon above the evaluated partition list. Each partition is seen as an individual evaluation area, which is marked by a number that corresponds to its number in the evaluation list.

- 3) Select one evaluated partition from the list, and then adjust the tripod head to make the camera face the lit part of the screen. Then, with the calibration function enabled, click **Shoot** to let *Calibration Pro* capture and analyze images of the evaluated partition. Next, click **Start** to begin the evaluation. The right side of the interface will display a statistical table that contains data before and after the calibration respectively. Below the table are 2 histograms representing the situation before and after the calibration.
- 4) The statistical table shows information about the evaluated partition before and after calibration, including **Uniformity**, **Maximum** (brightness), **Average value** (nit), and **Brightness loss**.
- 5) You can view the statistical information and the layout of the LEDs (Red, Green, and Blue) by clicking on the icons, and respectively.

 Then, you can click the icon to save the evaluation report to your PC.

4.3 Cabinet Calibration

4.3.1 New Cabinet Project

Step 1: Cabinet project wizard-1

In the start screen of *Calibration Pro*, click **New cabinet project** to access the **Cabinet project wizard-1**. Then, select a way for control PC connection.

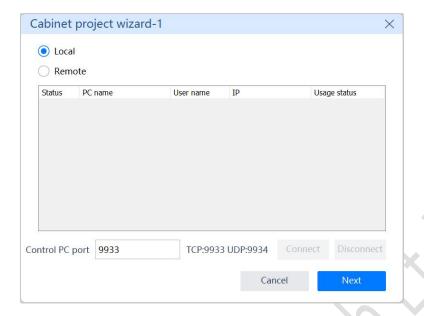


Fig.4-58 Select Local

Step 2: Cabinet project wizard-2

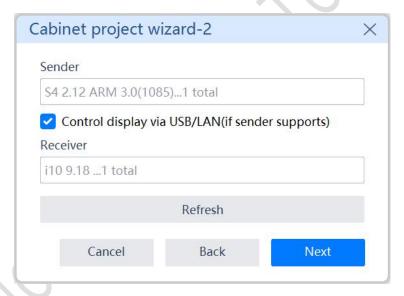


Fig.4-59 Cabinet project wizard-2

Note: You can refer to Full-screen project wizard-2 for reference.

Step 3: Cabinet project wizard-3

Select Canon as shown in Figure 4-60.

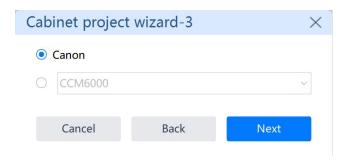


Fig.4-60 Cabinet project wizard-3

Step 4: Cabinet project wizard-4

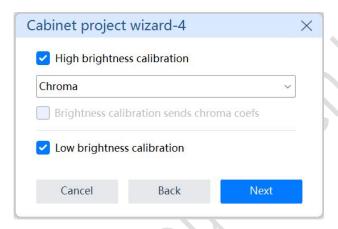


Fig.4-61 Cabinet project wizard-4

Note: You can refer to **Full-screen project wizard-4** for reference.

Step 5: Cabinet project wizard-5

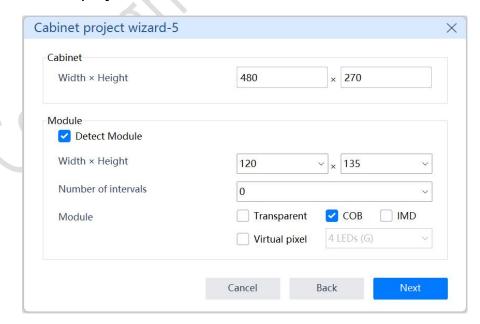


Fig.4-62 Cabinet project wizard-5

- (Cabinet) Width/Height: The resolution of the currently calibrated cabinet.
- (Module) Width/Height: The resolution of the currently calibrated module.
- Number of intervals: Calibration Pro will recommend a number after the cabinet width and height have been adjusted. You can also modify it manually.
- **Transparent:** This checkbox should be selected when the horizontal pixel pitch is different from the vertical one.
- **Different color:** Select this checkbox when the calibrated screen has modules with color difference.
- IMD: Select this checkbox when IMD module is used for the currently calibrated screen.

Step 6: Cabinet project wizard-6/7

- **Prefix:** Enter the prefix for the name of the new cabinets.
- Count: The number of cabinets that have been added to the cabinet list automatically.
- Naming method: Available options include: Cabinet number,
 Row-Column, and Column (ABC)-Row.
- Cabinet per row: Enter the number of cabinets on each row. The number you enter in this field will automatically change the cabinet name.
- Example: This field shows the example of a cabinet name automatically based on the Prefix, Naming method, and Cabinet per row you set before.

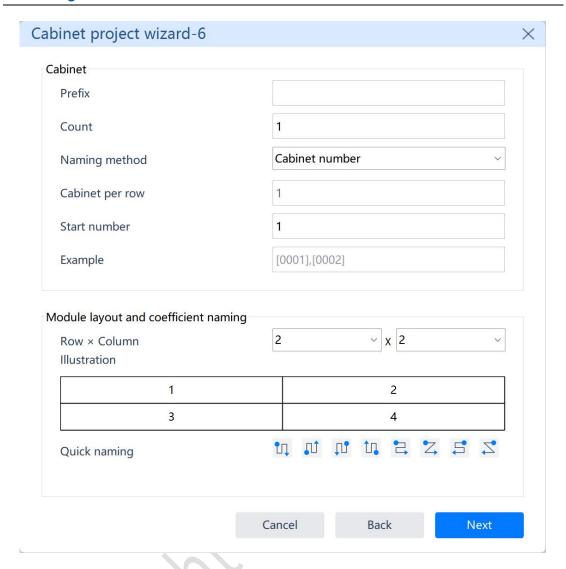


Fig.4-63 Cabinet project wizard-6

- Module layout and coefficient naming Row × Column: Defines the module layout (row × column) as needed. The coefficient files will be generated accordingly.
- Module layout and coefficient naming Illustration: This shows the layout of modules and the corresponding names.
- Module layout and coefficient naming Quick naming: Provides options for naming the module coefficients in a quick way.

Step 7: Cabinet project wizard-8

Cabinet project wizard-8		×
Save as		
Name		7
<enter a="" project<="" td=""><td>name></td><td></td></enter>	name>	
Location		
D:\Project\		
Cancel	Back	Save

Fig.4-64 Cabinet project wizard-8

Note: You can refer to Full-screen project wizard-7 for reference.

4.3.2 Project Settings

4.3.2.1 Project settings

The current project path will be displayed. Click the \bigsim to view the path.

Fig.4-65 Project path

4.3.2.2 Sender Mode

In the **Project Settings** tab, *Calibration Pro* will automatically detect senders and receivers once the control PC has been connected, and the senders and receivers that have been detected will be shown in the tab. See Figure 4-66.

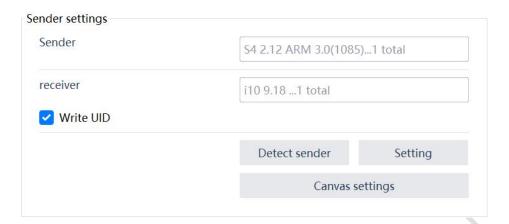


Fig.4-66 Main interface of cabinet project

- Detect sender: Click Detect sender to detect the currently connected senders and receivers, and then you will be able to view the model, version number, and amount of the senders and receivers detected.
- Setting: Click Setting to bring up a pop-up window where you can enable or disable the option Control LED display via USB/LAN (if sender supports). See Figure 4-67.

Fig.4-67 Control LED display via USB (if sender supports)

Canvas settings: If Control LED display via USB/LAN (if sender supports)
is not enabled, click the Canvas settings to set the starting coordinates
of the calibration image.

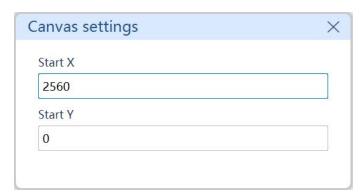


Fig.4-68 Canvas setting

4.3.2.3 Calibration Mode

Click **Switch** to choose a calibration mode. Available options include: **Brightness** and **Chroma**. See Figure 4-69.

Fig.4-69 Available calibration modes

4.3.2.4 Screen Settings

Set the resolution (width × height) of the cabinet and module.

Fig.4-70 Screen settings

Seam Correction:

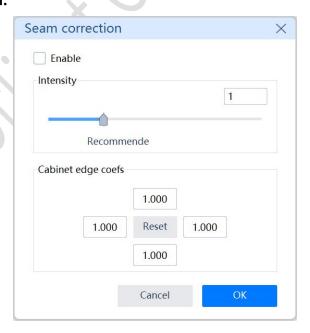


Fig.4-71 Seam correction

• Seam correction: This function is disabled by default. You can enable it as

needed. See Figure 4-71.

- Intensity: This field indicates the intensity of brightness adjustment for LEDs at the edges of the cabinet. The default intensity is 1. If the dark (or bright) line turns to be too bright (or too dark) after seam correction, you can lower the intensity appropriately. However, if you find the line still relatively dark (or bright) after correction, you can then increase the intensity appropriately.
- Cabinet edge coefs: You can fine tune the coefficients of the cabinet edge based on the existing calibration coefficients in this field. This operation can fix the dark and bright lines between cabinets.

4.3.2.5 Cabinet Parameters Settings

Connect to the sample cabinet that has saved receiver parameters and topology. Then, click **Read params** to save the parameters and topology from the sample cabinet. Once the parameters have been successfully read, you can select **Save params before shoot** so that the real-time parameters and topology will be automatically sent to the receivers before shooting photo for cabinet calibration.

Fig.4-72 Cabinet parameters settings

When **High brightness calibration** or **Low brightness calibration**, and the chip is XM or LYD23221, different parameters can be used for high and low brightness calibration. You can configure the parameters in **Gray level settings**.

4.3.2.6 Partition Settings

The Canon camera only supports setting the number of intervals. When the value is changed, re-calibration is required.

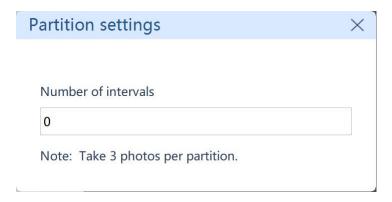


Fig.4-73 Partition settings

4.3.2.7 Effect Settings

See Section 4.2.2.4.

4.3.3 Camera Adjustment

See Section 4.2.3.

4.3.4 Image Capture

The interface of image capture for single cabinet calibration is as shown below.

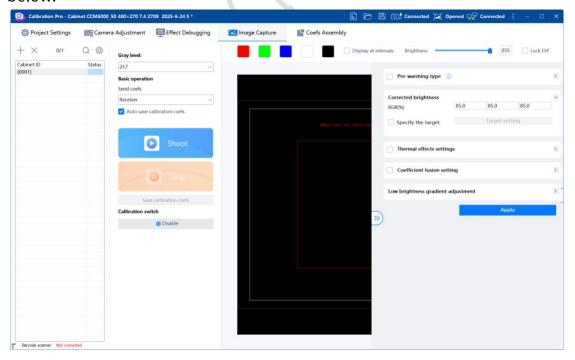


Fig.4-74 Single cabinet image capture in chroma calibration mode

4.3.4.1 Capture List

In Image Capture tab, available options above the cabinet list include:

- + (Add cabinet), \times (Delete the selected cabinet), \odot (Settings), and
- (Search in cabinet list).

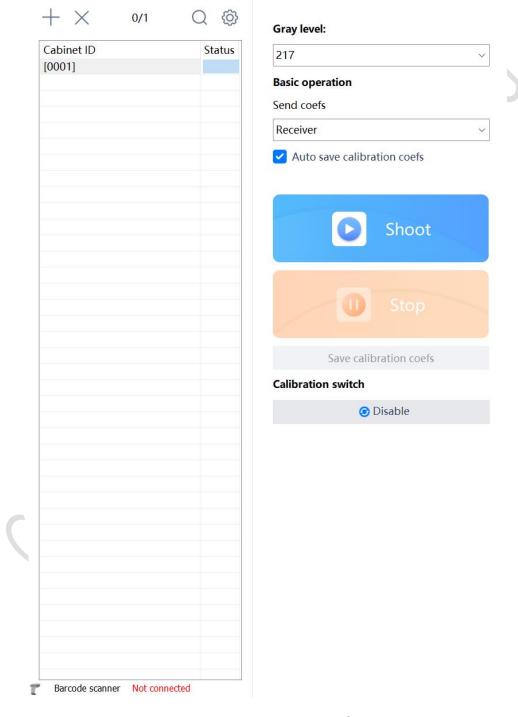


Fig.4-75 Image capture interface

- Ref.: The first cabinet that has completed calibration for all gray levels
 will be labeled with "Ref." when coefficients of it is being generated,
 indicating this is the reference cabinet. Re-capturing or deleting the
 image of this cabinet will affect the calibration effect of the rest cabinets.
- Send coefs to: Sets the target location for sending calibration coefficients when Auto Calibration is completed or when Save calibration coefs is enabled. Low brightness coefficients can be sent to chip, module, and chip and module. High brightness coefficients can be sent to receiver, module, and receiver and module.
- Auto save calibration coefs: When selected, the coefficients for the corresponding grayscale will be automatically sent to the specified location after calibration.
- **Shoot:** Click to start calibrating the currently selected cabinet.
- Stop: Click to stop the current calibration process.
- Save calibration coefs: Available when coefficients exist for the selected cabinet and grayscale. Click to send the coefficients to the specified location.
- Calibration switch: The calibration status will be updated after receiver detection. You can select Coefficient source, and Calibration mode, enable Chip low brightness, Simulated by PC, and Multi-layer calibration; and adjust Screen display to check the effect.

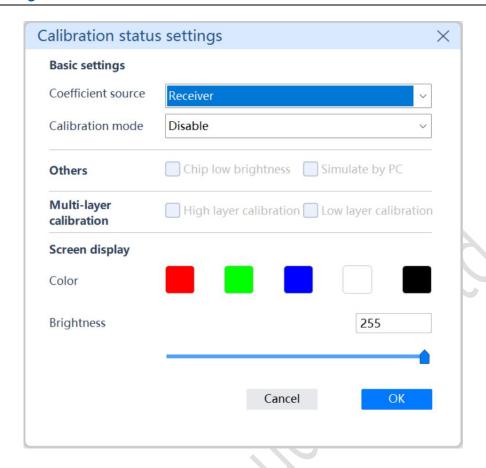


Fig.4-76 Calibration switch

4.3.4.2 Cabinet settings

 Pre-warm before shoot: Control the temperature of the captured gray level before the capture.

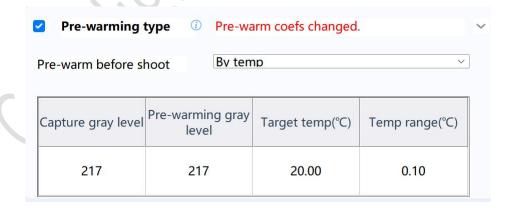


Fig.4-77 Pre-warm before shoot

- ◆ Capture gray level: The value takes effect only during pre-warming.
- ◆ Pre-warming type: Available options include By temp and By time.

- Pre-warming gray level: Displays white at the specified grayscale level during pre-warming.
- ◆ Target temperature(°C), Temperature difference(°C): Start capture the set gray level when the temperature detected by the thermometer reaches the value calculated by target temperature ± temperature difference.
- Pre-warming time: Start shoot after this set time.
- High brightness calibration:
 - ◆ Select Coefs blending settings to access the tab and then select Enable. The high brightness coefficients generated thereafter will apply the thermal effects model.

Fig.4-78 Thermal effects model

- ◆ The thermal effects model can be created using the thermal effects tool.
- Coefficient blending model:
 - Bending cabinets: When the number of calibrated cabinets reaches this count, the software will generate a model file and apply this model automatically.

Fig.4-79 Blending cabinets count

◆ Import coefficient

Manual matching:

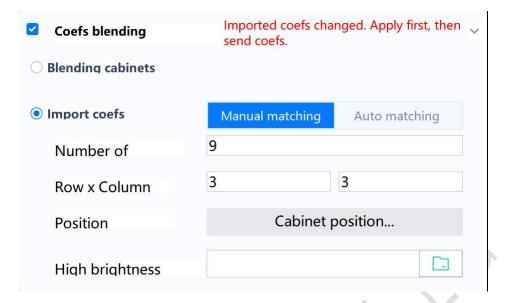


Fig.4-80 High brightness single-layer calibration

Click to import model coefficients. Then click **Cabinet position...** to set the cabinet location for high brightness coefficients. Low brightness coefficients does not require position matching.

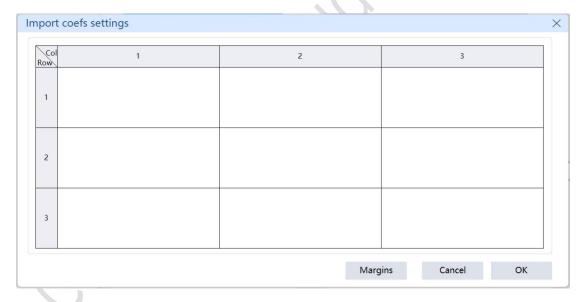


Fig.4-81 Import coefficients settings

Margin settings: The default margin is 0. You can enter the actual margin of the model coefficients.

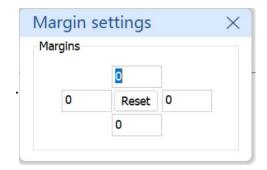


Fig.4-82 Margin settings

Automatic matching:

Once the coefficient model path is loaded, the software automatically maps the coefficients to the corresponding module position.

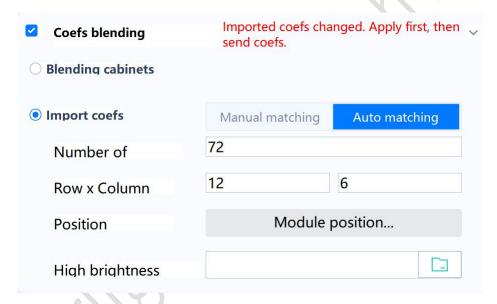


Fig.4-83 Automatic matching

 Apply & generate coefs: Click to generate cabinet coefficients of all calibrated cabinets.

4.3.4.3 Cabinet ID Settings

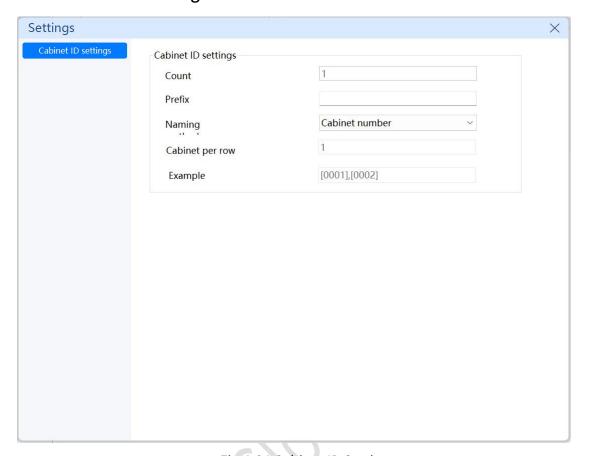


Fig.4-84 Cabinet ID Settings

- Cabinet ID settings: You can refer to Cabinet project wizard-6.
- Double-click the target cabinet ID in the cabinet list to bring up the window where you can modify the ID. Once you have changed the cabinet ID, the calibration data will also change accordingly. After the end of shooting and analyzing, the background color of the cabinet list will change to light blue, and when the coefficients have been successfully sent, a green check mark will appear on the status column.

4.3.4.4 Coefficient Settings

Chroma calibration mode

The brightness after calibration is 85% by default. You can click the input box in the Brightness after calibration field to modify the brightness. Click Chroma settings to bring up the window where you

can change the original color gamut and the target gamut. You should do the settings once for the first calibrated cabinet. The settings will then be applied to the subsequent cabinets.

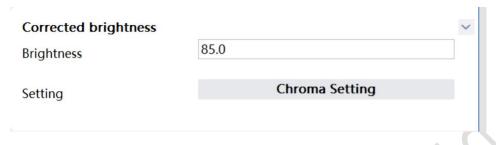


Fig.4-85 Chroma calibration (%)

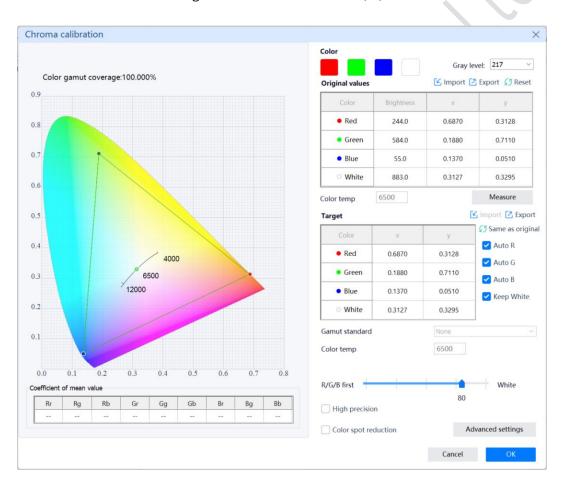


Fig.4-86 Chroma settings

Original values: You can measure the original values by clicking Measure after connecting to the color meter. Besides, you can also import the existing brightness value and coordinates, or click the value to modify. Clicking Export allows for exporting and saving the original values.

- ◆ Target: Calibration Pro will give a target gamut based on the data captured by the camera. If you want to modify the target gamut, you can deselect Auto R/G/B. If you want to apply standard gamut, you can select the standard (available standards include sRGB, AdobeRGB, PAL, NTSC, Rec.601, Rec.709, Rec.2020, and DCI-P3), and then click Import to import the target gamut. Besides, you can also double-click the input boxes to enter the desired values. If you select Same as original, the target gamut will not be adjusted after calibration.
- ◆ Color spot reduction: This can enhance the uniformity of the color compensation (not available for COB brightness calibration).
 - Target cabinet count: When the target cabinet count is 0, each cabinet will calculate its own target color gamut based on its tristimulus values (R, G, B). When the count is 1, the cabinet's RGB values will be followed by the subsequent cabinets for their own gamut. When the count is N (N>1), a common target gamut will be calculated based on the RGB values of all the N cabinets, and the subsequent cabinets will adopt this gamut to generate coefficients. After you set the target cabinet count, you can click Apply & generate coefs to make the settings take effect. In Multi-layer calibration mode, the gamut settings for each layer will be saved individually. When you finish the calibration, the target color gamut of the lower layer will receive recommendation based on that of the higher layer. After high-precision calibration is enabled, the first N cabinets cannot be modified, and their coefficients will be unavailable. To recalibrate, add new cabinets to the end of the list.
- ◆ Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.

Brightness calibration

Fig.4-87 Brightness after calibration

◆ The brightness after calibration is 85% by default. You can click the input boxes below R, G and B respectively to modify the brightness. You should do the settings once for the first calibrated cabinet. The settings will then be applied to the subsequent cabinets.

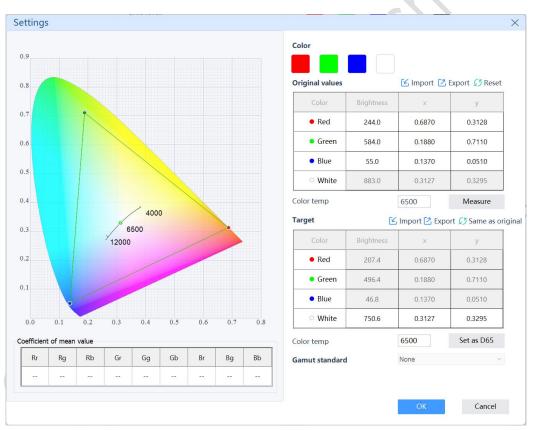


Fig.4-88 Target settings for brightness calibration

- ◆ Color: Click on a colored box to let the screen display the corresponding color.
- Original values: You can measure the original values by clicking
 Measure after connecting to the color meter. Besides, you can also

import the existing brightness value and coordinates, or double-click the value to modify. *Calibration Pro* will calculate the white point's color temperature based on the original values. You can export the original values by clicking **Export**. If you don't need to adjust the target temperature, you can simply skip this step.

- ◆ Target: You can adjust the coordinates of the target white point in this sheet. Click Import to import the existing target values. Clicking Export allows for saving the new target values. You can also click Set as D65 to set the color temperature to the standard 6500K. In addition, you can double-click the brightness, x, and y of White in the sheet, and then enter the new values. When Brightness calibration sends chroma coefs is enabled, the target color gamut can be configured.
- ◆ Coefficient average: This sheet shows the average value of each color component's coefficients generated in the most recent calibration.

4.3.4.5 Cabinet Capture Procedure

- 1) Click **Shoot** to start capturing cabinets from the selected cabinet list.
- 2) After analyzing image and generating coefficients, the calibration coefficients will automatically be saved to receivers, module, and chip. The **Auto save calibration coefs** is enabled by default. You can unselect the function.
- 3) You will be prompted once the coefficients have been successfully saved. Clicking **OK** can continue calibrating the next cabinet. You can also click the color on top of the interface to check the calibration effect.

Fig.4-89 Display control area

- 4) If needed, load the thermal effect model or import the coefficient blending model. For calibrated coefficients, you must click **Apply&generate coefs** for the new coefficients to take effect.
- 5) Repeat the step 1-3 to calibrate the rest cabinets.

4.3.5 Calibration Log

The calibration log records the abnormal event and the progress information of the calibration. When a cabinet finished calibration, or was added, deleted, or renamed, the event will be recorded into **Progress** sheet of the log. The operations that will affect the calibration progress and effects, such as switching calibration mode, modifying post-calibration brightness, metering and camera coefficient modification, low brightness capture Gamma, step size, and dark point adjustment, will be recorded into the **Exception** sheet.

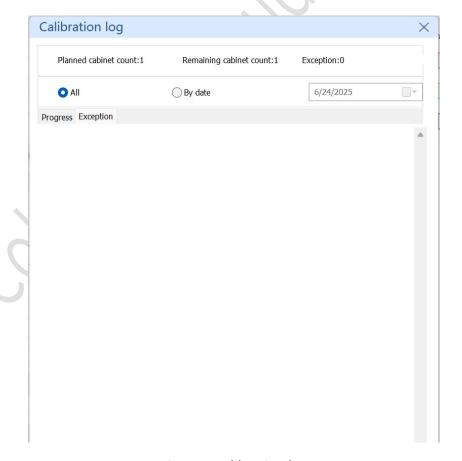


Fig.4-90 Calibration log

- Planned cabinet count: This number conforms to the cabinet count in the cabinet list.
- Remaining cabinet count = Planned cabinet count calibrated cabinet count
- Exception: This field shows the number of abnormal cabinets during calibration.
- All: This field shows the progress and exception records of the project.
- By date: Click the downward arrow to select a date from the drop-down calendar so as to check the calibration record generated on the selected date.

4.3.6 Coefs Assembly

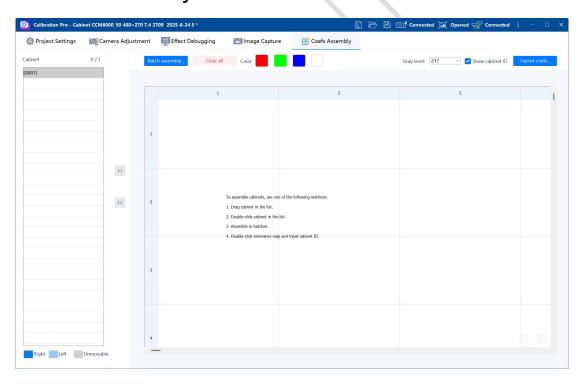


Fig.4-91 Coefficient assembly

You can access the **Coefs Assembly** tab after cabinet calibration. In cabinet list on the left side of the tab, the cabinets that have finished calibration will be colored dark blue. You can assemble the luminance map on the right side of the tab.

Select a cabinet with dark blue background and then click the rightward double arrows button in the middle of the interface to add the luminance map of the selected cabinet to the assembly area on the right side. The added map can move freely on the assembly area. If you want to remove a map from the area, you can simply select the luminance map and then click the leftward double arrows button in the middle of the interface. A light blue icon indicates that the cabinet has been assembled. A cabinet with gray background indicates it has not finished calibration and its luminance map cannot be added to the assembly area.

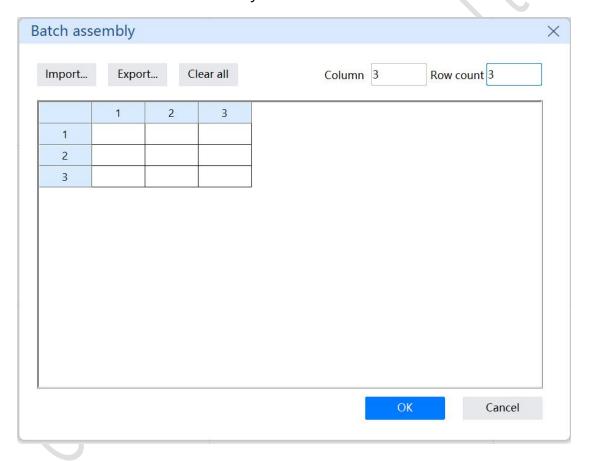


Fig.4-92 Batch assembly

Batch assembly: Enter target cabinets' names into an Excel table first. Then, in the Batch assembly window, import the Excel table. The cabinets (screen splits) luminance maps will then automatically be assembled according to the naming method of the cabinets. Next, click Export coefs to export the assembled cabinet (screen split) coefficients based on the cabinets' layout

in the assembly area. The coefficients will be exported either as full-screen coefficients or by partitions or by modules.

For the luminance maps of the assembled cabinets, you can right-click on the map to add an **Image dust off** mark frame. Then, you can set the mark frame to apply it to the current cabinets, the subsequent cabinets, or all cabinets. Next, click **Apply** to make the settings take effect.

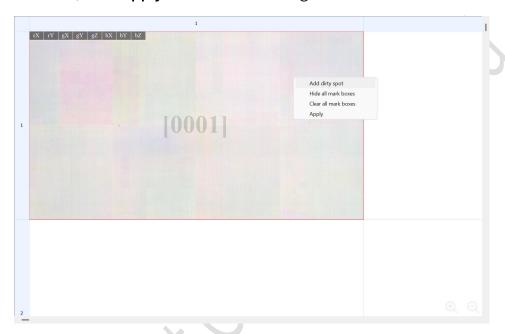


Fig.4-93 Add dirty spot

Fig.4-94 Delete, apply, and hide

Chapter5 Menu

5.1 Default Settings

Click the **Menu** button and then select **Settings** > **Default settings** to bring up a pop-up window where you can perform photo deleting settings, set up brightness after single gray level calibration, and select default location for saving project. See Figure 5-1.

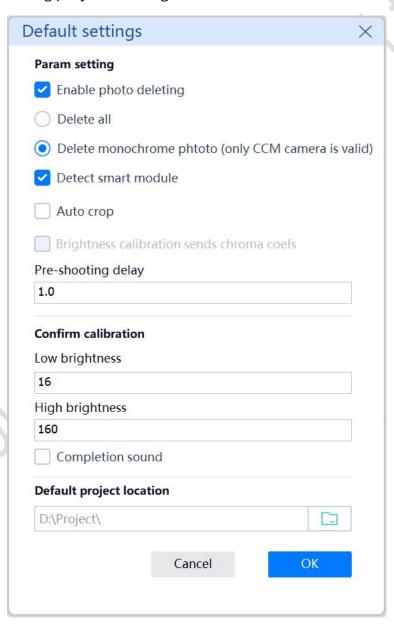


Fig.5-1 Default settings

- Enable photo deleting: If you select this checkbox, the software will automatically delete the photos that have been fully analyzed during the camera capturing process. The monochrome photo is only available in an operating environment using industrial camera. After deleting the monochrome photo, you can still gain the analysis result.
- Detect smart module: If you select this checkbox, the smart modules will be detected, if any. If there is a smart module detected, you can send coefficients to the module.
- Auto crop: When this option is selected, the image captured will automatically be cropped for an effective area, reducing the negative impact of oversize image and non-related area on the analysis.
- Brightness calibration sends chroma coefs: This option is only available
 for high brightness calibration project. When enabled, the target color
 gamut for brightness calibration can be modified, and the chroma
 coefficients will be generated.
- Pre-shooting delay: The default delay is 0. You can set a countdown for shooting, activating the capture after the designated time from the moment you click Shoot.
- Confirm calibration effect (Gray level): The default gray level in low brightness is 10. After the end of low brightness calibration, the software will automatically enable this calibration and display color white at gray level 10 on the screen for you to check the calibration effect. The default gray level in high brightness is 255. After the end of high calibration, the software will automatically enable this calibration and display color white at gray level 255 on the screen for you to check the calibration effect.
- Completion sound: When selected, the software will play a reminding sound once the calibration is completed.

5.2 Hardware Device

Click the three-dot button for menu, then select Hardware device for a pop-up management window. The hardware devices include **Camera**, **Scanner**, and **Color meter**. The tabs for **PLC** and **Scanner** management are only available with an open project.

Camera

In this tab, you can control the connection and EVF of the camera. After the connection, you can view information of the camera. If it is an industrial camera, you can view its model, CCD temperature, resolution, and driver version. If it is a Canon camera, you can view its resolution, exposure mode, current shutter, current aperture, focus ring value, and the quality of the photos captured by it.

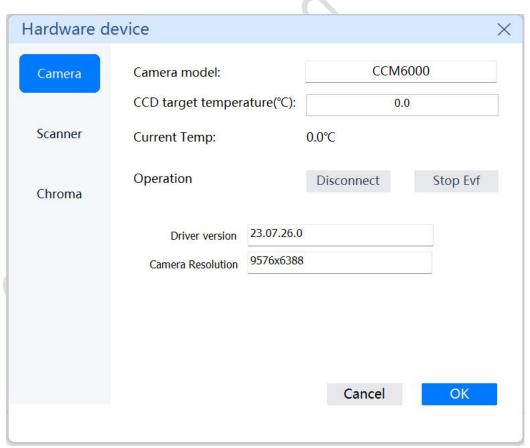


Fig.5-2 Camera

Scanner

You can manage the scanner connection and enable **Calibration with** scanner in this tab.

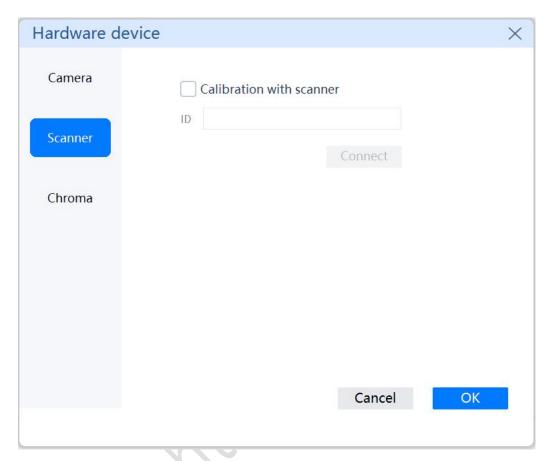


Fig.5-3 Scanner

Color meter

In the tab, you can connect to the color meter CS2000. Click **Measure** upon connecting to the color meter. Then, the spectral data of the 3 colors (Red, Green, and Blue) of the screen will be measured and shown in the tab. You can then click **Export spectral data** to export the RGB spectral data in .csv (Excel) format.

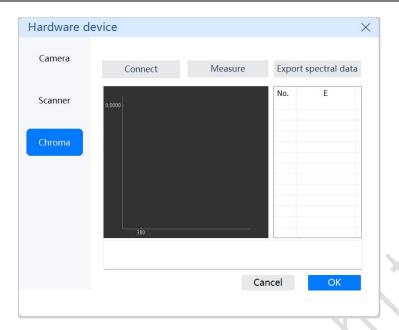


Fig.5-4 Color meter measurement - Green

5.3 Image Viewing

Click the **Menu** button and then select **Tools** > **Image viewing** to view the captured images.

Note: The images captured by software of different versions are not compatible with each other, which might result in analysis failure.

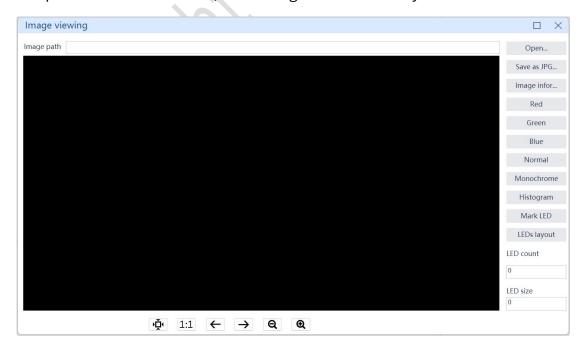


Fig.5-5 View image

- Open...: Click Open... to select a photo to view.
- Save as JPG: Click Save as JPG to save the currently opened photo in .JPG format.
- Image information: Click Image information to check information about the currently opened photo, including: Width, Height, Time, Shooting mode, Shutter, Aperture value, ISO, Focal length, Color temp, Temp, Manufacturer, camera model, and Lens model.

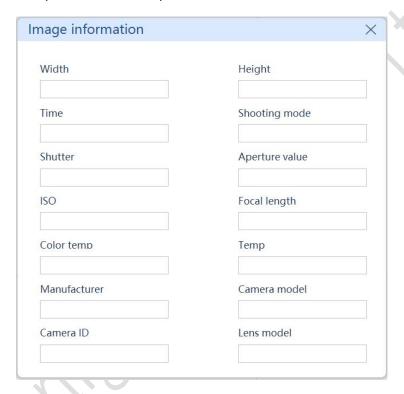


Fig.5-6 Image viewing - Image information

- Red/Green/Blue/Normal: Respectively shows the RGB information and the comprehensive information of the current photo.
- Monochrome: Shows the gray level layout information of the current photo.
- Histogram: Shows the brightness layout information of the current photo.
- Mark LED: Shows the LEDs identified and marked by the software.

- LEDs layout: Shows the LEDs layout of the current photo.
- **LED count**: Shows the LED count of the current photo.
- **LED size**: Shows the LED size of the current photo.
- You can click the icon to view the complete image, or select 1:1 to view the current photo pixel to pixel. Clicking ← can return to the previous photo and clicking → can access the next photo. You can also zoom in / zoom out on the photo by clicking ♠ / ♠.

5.4 Tools

5.4.1 CoefRotateTools

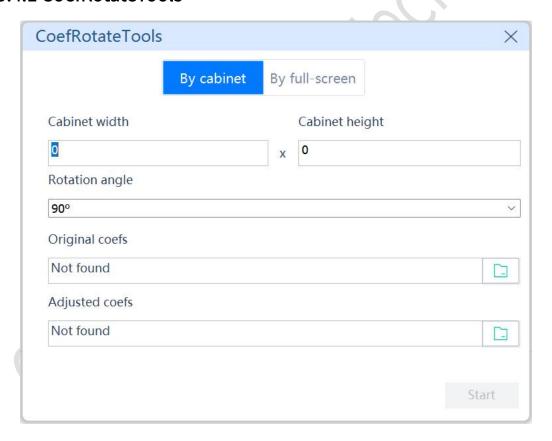


Fig.5-7 Coefficient rotation settings

You can rotate the cabinet or screen coefficients (clockwise by default).

- By cabinet: Set the width and height of the cabinet.
- By full-screen: Set the width and height of the screen.

- Rotation angle: Set the rotation angle for the coefficients. By default, the coefficients will be rotated in a clockwise direction. Available angles include: 90, 180, and 270.
- Original coefs: Select the location for saving the original coefficients.
- Adjusted coefs: Select the location for saving the adjusted coefficients.

You can click **Start** once you have finished the above settings. The original coefficients will then be rotated and saved according to the settings.

5.4.2 CrossTools

Based on the difference between the cold and warm screen coefficients, the **CrossTools** can be used to fix the problem caused by the thermal effect of the screen. The corrected coefficients can be saved locally.

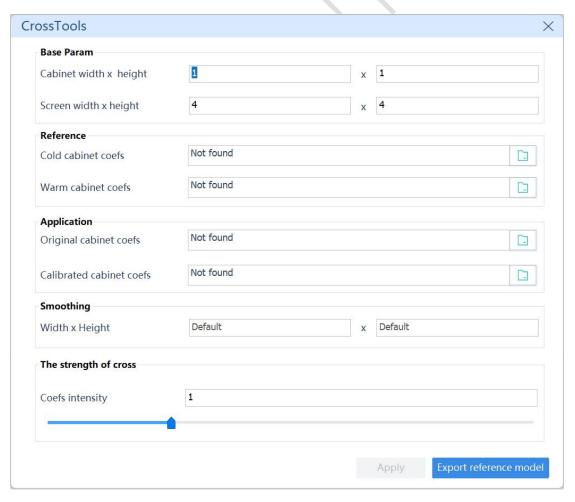


Fig.5-8 CrossTools for thermal effect removal

- Cabinet width and height: Set the cabinet size.
- Screen width and height: Set the screen size.
- Cold cabinet coefs: Select a location for saving the cold cabinet coefficients.
- Warm cabinet coefs: Select a location for saving the warm cabinet coefficients. The name of the cold cabinet coefficient should be the same as that of the warm cabinet coefficient.
- Original cabinet coefs: Select a location for saving the original coefficients.
- Calibrated cabinet coefs: Select a location for saving the coefficients after thermal removal.
- Intensity coefs: The default intensity is 1. You can change the intensity if necessary.

You can click **Start** once you have finished the above settings. The cabinet calibration coefficients after thermal removal will be generated automatically. You can then click **Export reference model** to export the coefficients.

5.4.3 Gamma Test

You can use color meter (model CA-VP427 or CS2000) to test the Gamma linearity of the screen.

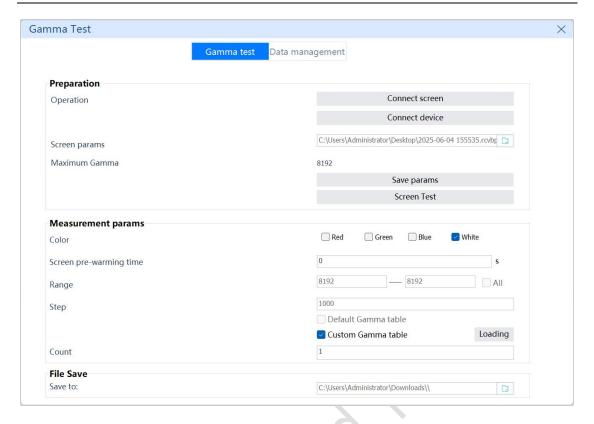


Fig.5-9 Gamma test settings

- Connect screen: Click this button to detect sender and control the screen.
- Connect color meter: Connect to the currently adopted color meter.
- **Screen test**: Click this button to test the screen color.
- Color: Select colors to be tested.
- Screen pre-warming time: Set a duration for screen pre-warming.
- Range: Shows the range of Gamma value (0-Max. Value) by default. The range can be modified manually.
- Step: Set the increment of the Gamma test. If you select Default Gamma table, the Gamma table of the current screen will be tested. You can also click Load to load a customized Gamma table. A green check mark will appear on the right side if the loading is successful.
- Count: Set the times for testing a same Gamma value.

Save to: Select a location for saving the data generated during the test.

Fig.5-10 Gamma test - Date management

- Import: Import the previous Gamma test data.
- Export: Export the current Gamma test data.
- Measure: Measure the Gamma based on the current Gamma test settings.
- **Draw line segments** : Select 2 points on the area below by clicking to draw a line segment connecting the 2 points.

5.4.4 Adjust Coefs

You can fix the problem of obvious color difference when the spare modules are changed to other position.

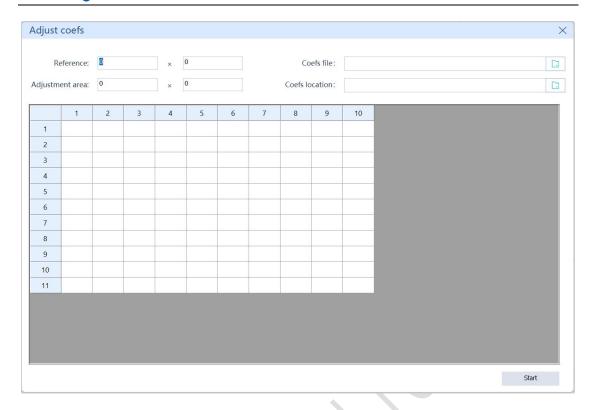


Fig.5-11 Coefficient adjustment tool

- Coefs file (next to Reference): Select a location for saving the full-screen calibration coefficients before changing spares.
- Coefs location (next to Adjustment): Select a location for saving coefficients of the spares that need to be adjusted.

Select the destination that you want to change the spare to, and enter the spare coefficient name. Then, you can click **Start**. A new full-screen coefficient after changing spares will be exported to the location you set (**Coefs file**), and a new coefficient after the adjustment will be exported to the **Coefs location** that you have selected before.

5.4.5 Calibration coefs mapping

In this window, you can re-map the LEDs coefficients based on the pixel drawing table.

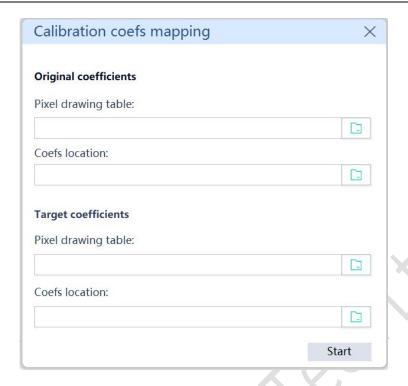


Fig.5-12 Coefficient remapping tool

5.4.6 Thermometer

You can view the real-time temperature of the screen in this window once a thermometer is connected.

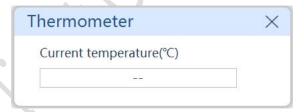


Fig.5-13 Thermometer

5.4.7 Fuse Seam Coef

With this tool, you can realize the fusion of coefficients generated in **Seam** correction (only) mode and those generated after pixel-by-pixel calibration.

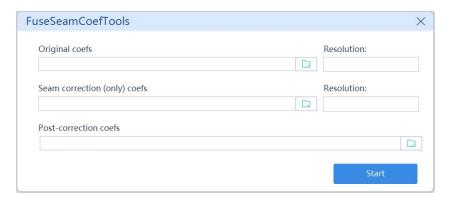


Fig.5-14 Fuse Seam Coef for fusion of seam correction coefficients

Original coefs: Click **Browse...** on the same row then select a pixel-by-pixel calibration coefficients file to upload.

Seam correction (only) coefs: Click **Browse...** on the same row then select a seam correction coefficients file to upload.

Post-correction coefs: Click **Browse...** on the same row then select a post-correction coefficients file to upload.

Click **Start** to start the fusion of coefficients. The new coefficients file will be saved under the same directory with the post-correction coefficients files.

The resolution will be automatically shown once the coefficients file is uploaded.

5.4.8 Flash Cal Tool

Calculates the Flash size required for the current calibration coefficients.

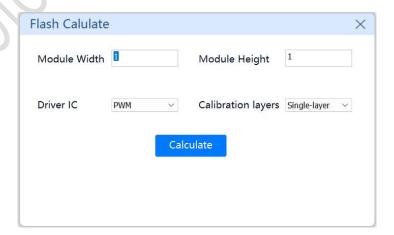


Fig.5-15 Flash Cal Tool

Chapter6 FAQs

- Q: Failed to detect receiver?
 - A: 1. Make sure you have connected the power supply.
 - 2. Ensure a stable connection.
- Q: Failed to launch *Calibration Pro* after installation?
 - A: 1. Make sure all components have been installed.
 - 2. Do not launch the software EOS Utility.
- Q: Failed to connect to the control PC?
 - A: 1. Ensure a stable firmware connection.
 - 2. Ensure a correct IP (if you have selected the local PC as the control PC, the IP should be 127.X.X.X), and then check if the ping is successful.
 - 3. Make sure the control PC and the client end share the same port, and try to establish ping with the target port (if the IP ping is successful but the port ping is not, it is usually caused by the firewall or router logic issue).
- Q: Abnormal screen display after launching *Calibration Pro* (such as screen flashing and screen artifact)?
 - A: Use the software LEDVISION to adjust the display and then save the new parameters to the receivers.
- Q: Failed to connect to the camera?
 - A: 1. Make sure the camera is supported by *Calibration Pro* (supported models include: CCM6000, Canon 70D, 80D, 90D, 7D, and 7D Mark II).

- 2. Ensure a stable firmware connections.
- 3. Make sure the camera is open and is not in the standby mode.
- 4. Make sure the camera is in manual mode (M mode).
- 5. Make sure the dongle has been inserted to your PC when you are using CCM6000 for calibration.

• Q: Failed to capture?

- A: 1. Make sure you are using supported camera for calibration.
 - 2. Make sure the camera is in manual mode (M mode).
 - 3. Make sure the MF of the lens has been enabled.
- Q: The shutter speed is 1/30 and cannot be increased?
 - A: 1. Make sure the camera is in manual mode (M mode).
 - 2. Make sure the camera is in picture mode (for taking photos) instead of in shooting mode (for taking videos).
- Q: Failed to analyze photos?
 - A: 1. Make sure you are using supported camera for calibration.
 - 2. Reinstall *Calibration Pro* to ensure complete components.
 - 3. Check the quality of capturing via **Image viewing**. In the **Image viewing** tab, you can first open a photo and then click **Measure brightness**, or view the monochrome and histogram to check whether the photo has the problem of focus error, overexposure, underexposure, or camera shake.
 - 4. This problem might be caused by over-dense LEDs as the partition is too big. In this case, you can add intervals among pixels to decrease the LED density.

- 5. This problem might be caused by too many dead pixels or pixel displacement.
- 6. This problem might be caused by the lack of memory.
- Q: Photo quality unable to be improved even after repeated capturing?
 - A: Possible causes include: Focus error, overexposure or underexposure, or camera shake.

If it is caused by focus error, you can:

- 1. If you are using SLR camera, you should enable the viewfinder of the camera or switch to LIVE mode for focusing.
- 2. Try the MF mode to enhance focus accuracy.

If it is caused by overexposure/Underexposure, you can:

Set new camera parameters in **Camera Adjustment** tab.

If it is caused by camera shake, you can:

- 1. Ensure stable camera placing.
- 2. Disable the lens' stabilizer (if any) and the camera's stabilizer (if any).
- Q: Screen brightness/saturation decreased after calibration?
 - A: Calibration Pro will decrease the brightness of the relatively brighter point of the screen to ensure uniform brightness when performing brightness calibration, hence the decreased full-screen brightness after the calibration. When performing chroma calibration, the software will decrease saturation to ensure a uniform screen display and the brightness will also be calibrated during this process, hence the decreased full-screen brightness and saturation.

- Q: Screen artifact (with color spot) after calibration?
 - A: 1.Check the quality of capturing via Image viewing. In the Image viewing tab, you can first open a photo and then click Measure brightness, or view the monochrome and histogram to check whether the photo has the problem of focus error, overexposure, underexposure, or camera shake.
 - 2. This problem might be caused by over-sized partition, which leads to too small imaging size and increase sampling error.
 - 3. This problem might be caused by inconsistency between the simulated calibration Gamma table and the target. Try to send parameters to receivers in this case.
 - 4. Deselect Image dust off.
- Q: Scan lines appeared after calibration?
 - A: 1. This problem might be caused by too fast shutter speed. In this case, try to increase shutter and decrease the brightness at the same time.
 - 2. This problem might be caused by too low refresh rate. Try to increase the refresh rate in this case.
- Q: Color moiré (rippling effect) appeared after calibration?
 - A: When you are capturing a high-resolution screen, the LED refresh rate might interfere with the pixel resolution, which leads to system error. The error include position error and brightness error. To fix this problem, you can:
 - 1. Make sure the camera frame is filled with image.
 - 2. Decrease partitions and increase focal length (you should perform metering again after adjusting the focal length).

- 3. Reduce the focus a little bit (you should perform metering again after adjusting the focus), and then try to capture with a little focus error (the error should not be too big to ensure normal analysis). And add intervals among pixels if necessary.
- 4. Disable **Seam correction** to eliminate the effect of position error.

Statement

Copyright © 2025 Colorlight Cloud Tech Ltd. All rights reserved.

No part of this document may be copied, reproduced, transcribed, or translated without the prior written permission of Colorlight Cloud Tech Ltd., nor be used for any commercial or profit-making purposes in any form or by any means.

This guide is for reference only and does not constitute any form of commitment. Please refer to the actual products (including but not limited to color, size, screen display, etc.)

Colorlight

Colorlight Cloud Tech Ltd

Service Phone: 4008 770 775

Official Website: www.colorlightinside.com

Head Office Address: 37F-39F, Block A, Building 8, Zone C, Phase III, Vanke Cloud City, Xili Street, Nanshan District, Shenzhen, China